People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Satish
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024MAX Phase Ti<sub>2</sub>AlN for HfO<sub>2</sub> Memristors with Ultra‐Low Reset Current Density and Large On/Off Ratiocitations
- 2024Multi-Objective Optimization of Friction Stir Processing Tool with Composite Material Parameters
- 2023Photochemically Induced Marangoni Patterning of Polymer Bilayers
- 2023Wear performance analysis of B<sub>4</sub>C and graphene particles reinforced Al–Cu alloy based composites using Taguchi methodcitations
- 2023Evolution of flow reversal and flow heterogeneities in high elasticity wormlike micelles (WLMs) with a yield stresscitations
- 2022SURFACE EROSION PERFORMANCE OF YTTRIUM OXIDE BLENDED WC-12CO THERMALLY SPRAYED COATING FOR MILD STEELcitations
- 2022Controlling Surface Deformation and Feature Aspect Ratio in Photochemically Induced Marangoni Patterning of Polymer Filmscitations
- 2021Criteria Governing Rod Formation and Growth in Nonionic Polymer Micellescitations
- 2021Achieving Stable Patterns in Multicomponent Polymer Thin Films Using Marangoni and van der Waals Forcescitations
- 2021Study on Solid Particle Erosion of Pump Materials by Fly Ash Slurry using Taguchi’s Orthogonal Arraycitations
- 2020Self-aligned capillarity-assisted printing of high aspect ratio flexible metal conductorscitations
- 2019Dynamic wetting failure in curtain coatingcitations
- 2017Droplet wetting transitions on inclined substrates in the presence of external shear and substrate permeabilitycitations
- 2016Dynamic wetting failure and hydrodynamic assist in curtain coatingcitations
- 2015Combined thermal and electrohydrodynamic patterning of thin liquid filmscitations
- 2011Highly conducting and flexible few-walled carbon nanotube thin filmcitations
- 2010Meltblown fiberscitations
- 2010Transient growth without inertiacitations
- 2010Transient response of velocity fluctuations in inertialess channel flows of viscoelastic fluids
- 2004Instability of viscoelastic plane Couette flow past a deformable wallcitations
- 2000Shear banding and secondary flow in viscoelastic fluids between a cone and platecitations
Places of action
Organizations | Location | People |
---|
article
Dynamic wetting failure in curtain coating
Abstract
<p>In this work dynamic wetting failure of Newtonian liquids in a curtain coating geometry is studied using a hydrodynamic model developed in our prior work (Liu et al., 2016b). The model is used to predict the onset of wetting failure with curtain heights consistent with prior experimental setups. In the model, a Navier-slip boundary condition and constant contact angle are used to describe the dynamic contact line (DCL). The governing equations are solved with the Galerkin finite-element method and the critical substrate speed is identified at which wetting failure occurs. A boundary of a coating window is constructed which outlines the critical substrate speed for different flow rates of the liquid curtain. The model predictions are compared with prior experimental observations reported by Blake et al. (1999) and Marston et al. (2009). The model reproduces the non-monotonic behavior of the critical speed as the liquid flow rate increases. When surfactants are absent, our results suggest that the experimental observations can largely be explained with a model that uses the simplest boundary conditions at the DCL (Navier-slip and constant contact angle) and accounts for the air stresses there to accurately calculate interface shapes. When surfactants are present, our results suggest that a decrease in the equilibrium surface tension may not be the only mechanism responsible for changes in the shape of the coating window. In particular, Marangoni stresses may play an important role.</p>