Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Osuch-Słomka, Edyta

  • Google
  • 1
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effect of the sintering parameters on the structure and mechanical properties of zirconia-based ceramics9citations

Places of action

Chart of shared publication
Michalczewski, Remigiusz
1 / 2 shared
Sofronov, Dmitry
1 / 1 shared
Rucki, Miroslaw
1 / 5 shared
Nerubatskyi, Volodymyr
1 / 7 shared
Hevorkian, Edvin
1 / 2 shared
Krzysiak, Zbigniew
1 / 4 shared
Latosińska, Jolanta Natalia
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Michalczewski, Remigiusz
  • Sofronov, Dmitry
  • Rucki, Miroslaw
  • Nerubatskyi, Volodymyr
  • Hevorkian, Edvin
  • Krzysiak, Zbigniew
  • Latosińska, Jolanta Natalia
OrganizationsLocationPeople

article

Effect of the sintering parameters on the structure and mechanical properties of zirconia-based ceramics

  • Michalczewski, Remigiusz
  • Osuch-Słomka, Edyta
  • Sofronov, Dmitry
  • Rucki, Miroslaw
  • Nerubatskyi, Volodymyr
  • Hevorkian, Edvin
  • Krzysiak, Zbigniew
  • Latosińska, Jolanta Natalia
Abstract

The paper presents the results of an investigations of the sintered zirconia ceramics that have been stabilized with Y2O3 and CeO2. The initial powders were synthesized via decomposition of the fluoride salts, which determined morphological features and dimensions of the particles. The specific electroconsolidation process, performed using the modified spark plasma sintering device, allowed for the retention of the nanoscale grain sizes and related properties of the sintered ceramic composites. It was found that the as-obtained materials with cerium oxide exhibited high bending strength of 609 MPa, by ca. 33 % higher than that of yttria-stabilized ones (410 MPa). In turn, the best combination of hardness and fracture toughness, K1С = 5.8 МPа·m1/2 аnd Нv = 14.8 GPа, respectively, exhibited ZrO2+3 wt% Y2O3. This result can be attributed to the chemical composition and morphology of the powders, which in turn is influenced by the synthesis conditions and calcination time and temperatures, as well as to the sintering parameters. In particular, yttria-stabilized zirconia showed higher sensitivity to the variations of the sintering temperatures and holding times.

Topics
  • impedance spectroscopy
  • morphology
  • grain
  • grain size
  • strength
  • composite
  • hardness
  • chemical composition
  • ceramic
  • fracture toughness
  • decomposition
  • sintering
  • Cerium