People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miettinen, Susanna
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Cornea-Specific Human Adipose Stem Cell-Derived Extracellular Matrix for Corneal Stroma Tissue Engineeringcitations
- 2024Vat photopolymerization of biomimetic bone scaffolds based on Mg, Sr, Zn-substituted hydroxyapatite : Effect of sintering temperaturecitations
- 2024Boron substitution in silicate bioactive glass scaffolds to enhance bone differentiation and regenerationcitations
- 2024Vat photopolymerization of biomimetic bone scaffolds based on Mg, Sr, Zn-substituted hydroxyapatitecitations
- 2023Improvements in Maturity and Stability of 3D iPSC-Derived Hepatocyte-like Cell Culturescitations
- 2021Retrieval of the conductivity spectrum of tissues in vitro with novel multimodal tomographycitations
- 2020Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based toolscitations
- 2020Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensorscitations
- 2020A tube-source X-ray microtomography approach for quantitative 3D microscopy of optically challenging cell-cultured samplescitations
- 2018Knitted 3D Scaffolds of Polybutylene Succinate Support Human Mesenchymal Stem Cell Growth and Osteogenesiscitations
- 2018Cell response to round and star-shaped polylactide fibers
- 2016Differentiation of adipose stem cells seeded towards annulus fibrosus cells on a designed poly(trimethylene carbonate) scaffold prepared by stereolithographycitations
- 2016Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineeringcitations
- 2016UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffoldscitations
- 2013Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiationcitations
- 2010Oil Induced Swelling in Thermoelastic Materials
- 2010Porous polylactide/beta-tricalcium phosphate composite scaffolds for tissue engineering applicationscitations
- 2009Calcium phosphate surface treatment of bioactive glass causes a delay in early osteogenic differentiation of adipose stem cellscitations
- 2009Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiationcitations
Places of action
Organizations | Location | People |
---|
article
Vat photopolymerization of biomimetic bone scaffolds based on Mg, Sr, Zn-substituted hydroxyapatite
Abstract
<p>In response to the urgent demand for innovative bone regeneration solutions, the focus of this study is to develop and characterize Mg, Sr, Zn-substituted calcium phosphate scaffolds that replicate the trabecular architecture of cancellous bone. Ion substitution represents a promising approach to improve the biological effectiveness of calcium phosphates and composite materials used in bone tissue engineering applications. Porous scaffolds mimicking the natural bone structure were additively manufactured from the photosensitive ceramic suspensions for vat photopolymerization using digital light processing. The impact of the selected trace elements (0, 1 and 5 mol.% substitution) and the sintering temperature (900, 1000, 1100, 1200, and 1300 °C) was investigated in relation to the obtained crystalline phase content, microstructure, elemental distribution, thermal stability, and mechanical properties. After sintering, in addition to hydroxyapatite, β-tricalcium phosphate was detected as a result of the added trace elements in the calcium-deficient hydroxyapatite used as a starting powder. The obtained scaffolds exhibited uniform distribution of the trace elements, and they feature 3D-designed porosity predominantly ranged from 10 to 900 μm in diameter, with an average pore size of 546.25 ± 10.95 μm. The total porosity of scaffolds was 76.24 ± 1.32 vol% and an average wall thickness of 217.03 ± 8.98 μm, closely resembling the morphology of cancellous bone tissue. The mechanical properties of the scaffolds sintered at 1100 °C, 1200 °C, and 1300 °C were in line with those typically observed in trabecular bone. The study demonstrates the feasibility of using custom made bioactive hydroxyapatite powders together with vat photopolymerization to design the porosity and properties of the bone scaffolds on demand, based on the requirements of individual bone defects.</p>