Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jayaseelan, Doni Daniel

  • Google
  • 1
  • 2
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024High temperature corrosion behaviour of calcium magnesium aluminosilicate coated oxide-oxide ceramic matrix composites6citations

Places of action

Chart of shared publication
Ramachandran, Karthikeyan
1 / 4 shared
Bear, Joseph C.
1 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ramachandran, Karthikeyan
  • Bear, Joseph C.
OrganizationsLocationPeople

article

High temperature corrosion behaviour of calcium magnesium aluminosilicate coated oxide-oxide ceramic matrix composites

  • Ramachandran, Karthikeyan
  • Bear, Joseph C.
  • Jayaseelan, Doni Daniel
Abstract

Corrosion on turbine blades in calcium magnesium alumino-silicate (CMAS) environment is a crucial failure for turbine engines and its components. In this study, oxide-oxide (O-O) ceramic matrix composites (CMCs) (AS-N610), the potential materials for gas turbine components are examined for its corrosion behaviour at high temperature at various intervals of time in presence of CMAS. The corrosion studies indicated that dip coated CMAS revealed a weight gain of ∼3% owing to formation of α-Al2O3 at 1400 °C. The SE images indicated cracks at the interface due to thermal mismatch between CMAS and O-O substrate. With increase in corrosion time, cracks at the interface propagated onto the matrix and fibres of O-O CMCs. This crack propagation is attributed to the diffusion of calcium aluminosilicate (CAS) with small traces of Mg which wicks the columns of O-O CMCs. Indentation fracture toughness of O-O CMCs degraded by ∼22% for 1400 °C in presence of CMAS compared to un-corroded sample.

Topics
  • impedance spectroscopy
  • Magnesium
  • Magnesium
  • crack
  • composite
  • Calcium
  • fracture toughness
  • high temperature corrosion
  • oxide ceramic