People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zasada, Dariusz
Military University of Technology in Warsaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023On the Influence of Manufacturing Parameters on the Microstructure, Mechanical Properties and Corrosion Resistance of AISI 316L Steel Deposited by Laser Engineered Net Shaping (LENS®)citations
- 2023Assessment of Selected Structural Properties of High-Speed Friction Welded Joints Made of Unalloyed Structural Steelcitations
- 2023Regularly arranged ZnO/TiO2, HfO2, and ZrO2 core/shell hybrid nanostructures - towards selection of the optimal shell material for efficient ZnO-based UV light emitterscitations
- 2021Investigation of the Relationship between Degradation of the Coating of Gas Turbine Blades and Its Surface Colorcitations
- 2020Evaluation the structure transformation of intermetallic feal powder particles in gas detonation spraying process (GDS) to the water
Places of action
Organizations | Location | People |
---|
article
Regularly arranged ZnO/TiO2, HfO2, and ZrO2 core/shell hybrid nanostructures - towards selection of the optimal shell material for efficient ZnO-based UV light emitters
Abstract
Luminescent properties of ZnO/TiO2, ZnO/HfO2, and ZnO/ZrO2 core/shell hybrid nanotubes (NTs) with the shell thickness varying between 9 and 40 nm were studied. The hybrid nano-ceramics demonstrated distinct differ-ences in their luminescence performance. The highest UV/VIS ratio and the longest fluorescence lifetime were observed for the ZnO/TiO2 NTs. The behavior was ascribed to resonance energy/charge transfer between TiO2 and ZnO owing to the similar position of conduction and valence band edges, and comparable bandgap energies (Eg) which allowed for a simultaneous excitation of electron-hole pairs in both semiconductors. The difference between the other two core/shell NTs was attributed to the larger bond energy of HfO2 as compared to that of ZrO2 and smaller refractive index of HfO2 as compared to that of ZnO. The results obtained in this work strongly indicate that in the optimal core/shell heterostructure, not only the shell material should form a type-I heter-ojunction with the ZnO nanostructure but also the excitation energy should be comparable to or larger than the Eg of the coating material. Moreover, the shell material with a high negative formation enthalpy and lower refractive index than that of ZnO would assure an efficient surface passivation and better photon extraction from the emitter.