People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cheremisina, Elizaveta
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Properties of liquid CaO–SiO2 and CaO–SiO2-‘Fe2O3’tot slags measured by a combination of maximum bubble pressure and rotating bob methodscitations
- 2022Assessment of the dissolution rate and behaviour of raw dolomite and limestone with different calcination degrees in primary steelmaking slagscitations
- 2021Evaluation of Dissolution Rate and Behavior of MgO Carriers for Primary and Secondary Metallurgical Slags
- 2019Kinetics and Mechanisms of Dolime Dissolution in Steelmaking Slagcitations
- 2017Influence of Magnesium Oxide content on kinetics of lime dissolution in steelmaking slagscitations
Places of action
Organizations | Location | People |
---|
article
Properties of liquid CaO–SiO2 and CaO–SiO2-‘Fe2O3’tot slags measured by a combination of maximum bubble pressure and rotating bob methods
Abstract
Liquid slag properties are essential for understanding complex mass and momentum phenomena in metallurgical operations. The density, surface tension and viscosity were measured in six silicate-rich slags of the CaO–SiO2 and CaO–SiO2-‘Fe2O3’tot systems by combining the maximum bubble pressure and rotating bob methods. The properties investigated were sensitive to the temperature, SiO2 and Fe2O3 contents. Different experimental trends were derived due to the amphoteric properties of Fe2O3. The slags with ferric oxide were denser than the silicate melts. Surface tension gradually decreased with temperature and indicated firstly a rise and then decline with further Fe2O3 addition. Raman spectra were analyzed to provide structural information of the polymer melt and indicated an enhancement in the polymerization degree with Fe3+. The derived experimental trends and role of Fe3+ in the silicates were attributed to the interplay of complex factors: different bonding in the melt, cation interactions and the oxidation state of iron. The influence of Fe3+/Fe2+ on the melt properties was discussed.<br/><br/>Previous article in issue