People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lambai, Aloshious
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024In-situ SEM micropillar compression and nanoindentation testing of SU-8 polymer up to 1000 s−1 strain ratecitations
- 2024Correlated high throughput nanoindentation mapping and microstructural characterization of wire and arc additively manufactured 2205 duplex stainless steelcitations
- 2023Effect of stiff substrates on enhancing the fracture resistance of Barium Titanate thin filmscitations
- 2023Evolution of alumina phase structure in thermal plasma processingcitations
- 2023Evolution of alumina phase structure in thermal plasma processingcitations
- 2022Effect of Welding Direction and Bead Pattern in Alloy 52 / SA508 Repair Weld
- 2022Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymerscitations
- 2021Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymerscitations
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld: Experimental Evaluation and Post-Weld Characterizationscitations
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld:Experimental Evaluation and Post-Weld Characterizationscitations
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld : Experimental Evaluation and Post-Weld Characterizationscitations
Places of action
Organizations | Location | People |
---|
article
Evolution of alumina phase structure in thermal plasma processing
Abstract
<p>Alumina (Al<sub>2</sub>O<sub>3</sub>) remains one the most important engineering ceramic for industrial applications. In addition to the α phase, transition alumina phases have interesting characteristics. Controlling the obtained phase structure from alumina melt requires processes with extreme cooling rates and therefore limits the tailoring capabilities. This study investigates how the cooling rate of pure alumina affects its microstructural properties and phase structure in plasma-based processing. The paper reports phase changes in micron sized granulated alumina particles in high-temperature plasma spheroidization and compares the results to plasma sprayed alumina coatings. Both plasma processes involve melting of the material followed by subsequent rapid cooling. Direct comparison on the alumina phase transitions is obtained for the two methodically distinct processing routes, creating unique microstructures due to difference in their cooling rates.</p>