People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kežionis, Algimantas
Vilnius University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Synthesis of Yb and Sc stabilized zirconia electrolyte (Yb0.12Sc0.08Zr0.8O2–δ) for intermediate temperature SOFCs: Microstructural and electrical propertiescitations
- 2019Preparation and Characterization of Large Area Li-NASICON Electrolyte Thick Filmscitations
- 2018Aqueous sol–gel synthesis, thermoanalytical study and electrical properties of La2Mo2O9citations
- 2011Structure and electrical properties of Li3–xSc2–xZrx(PO4)3 (x = 0, 0.1, 0.2) ceramicscitations
- 2010Preparation and characterization of Li2.9Sc1.9-yYyZr0.1(PO4)3 (where y=0, 0.1) solid electrolyte ceramicscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of Yb and Sc stabilized zirconia electrolyte (Yb0.12Sc0.08Zr0.8O2–δ) for intermediate temperature SOFCs: Microstructural and electrical properties
Abstract
Ceramic electrolytes based on Yb and Sc stabilized zirconia enable efficient heat transfer and effective ionic conductivity. Here, the design and synthesis of Yb and Sc stabilized zirconia electrolyte is presented for intermediate temperature solid oxide fuel cells (SOFCs). Yb0.12Sc0.08Zr0.8O2–δ was synthesized using the sol-gel method, and a thorough characterization of the electrolyte properties was conducted including structural and electrical properties. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS) confirmed the composition of the electrolyte. A single-phase cubic structure with a density of 6.7041 ± 0.0008 g cm−3 was obtained. The thermal expansion coefficient in the temperature range from 25 °C to 800 °C is equal to 1.17 × 10−6 K−1. The activation energy of 1.06 eV and 1.15 eV was obtained for the bulk and grain boundary conductivity, respectively. The ionic conductivity of approx. 2.10 S m−1 was achieved at 667 °C, thus it is suitable for efficient ionic conduction at intermediate temperatures.