Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Siddiq, Abubakr

  • Google
  • 1
  • 4
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Optimization of a ScCeSZ/GDC bi-layer electrolyte fabrication process for intermediate temperature solid oxide fuel cells12citations

Places of action

Chart of shared publication
Snowdon, Abigail L.
1 / 2 shared
Jiang, Zeyu
1 / 3 shared
Steinberger-Wilckens, Robert
1 / 38 shared
El-Kharouf, Ahmad
1 / 7 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Snowdon, Abigail L.
  • Jiang, Zeyu
  • Steinberger-Wilckens, Robert
  • El-Kharouf, Ahmad
OrganizationsLocationPeople

article

Optimization of a ScCeSZ/GDC bi-layer electrolyte fabrication process for intermediate temperature solid oxide fuel cells

  • Snowdon, Abigail L.
  • Siddiq, Abubakr
  • Jiang, Zeyu
  • Steinberger-Wilckens, Robert
  • El-Kharouf, Ahmad
Abstract

Cost-effective wet ceramic coating techniques for fabricating ScCeSZ/GDC bi-layer electrolyte anode-supported button cells were investigated in this study. Aqueous ceramic slurries were prepared by ball milling and then used for Ni/ScCeSZ half cell fabrication by tape casting and spin coating. Prepared cells were tested at operating temperature between 700 and 800°C with a fuel composition of hydrogen:nitrogen 3:1 and air at the cathode. The cell with a spin coated GDC film showed the maximum power density of 1.142, 1.012, 0.813 W•cm−2 at 800, 750, and 700°C, respectively. It was also able to produce power output around 0.7 W•cm−2 for 500 h at 750°C, which confirms the cell operational stability. More importantly, the GDC film prepared by spin coating effectively avoided the formation of the (Zr,Ce)O2−based solid solution at the ceria/zirconia interface compared with the other cells with the co-casted and sintered GDC film.

Topics
  • density
  • milling
  • Nitrogen
  • Hydrogen
  • casting
  • ceramic
  • ball milling
  • ball milling
  • spin coating