People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stamate, Eugen
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2024Oxygen-defective electrostrictors for soft electromechanicscitations
- 2022Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inkscitations
- 2022Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inkscitations
- 2022Development of an SFMM/CGO composite electrode with stable electrochemical performance at different oxygen partial pressurescitations
- 2022Development of an SFMM/CGO composite electrode with stable electrochemical performance at different oxygen partial pressurescitations
- 2022Development of an SFMM/CGO composite electrode with stable electrochemical performance at different oxygen partial pressurescitations
- 2020Low-temperature preparation and investigation of electrochemical properties of SFM/CGO composite electrodecitations
- 2020Low-temperature preparation and investigation of electrochemical properties of SFM/CGO composite electrodecitations
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Monolithic thin-film chalcogenide–silicon tandem solar cells enabled by a diffusion barriercitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2015Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin filmscitations
- 2014Status and challenges in electrical diagnostics of processing plasmascitations
- 2013A modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure
- 2011Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructurescitations
Places of action
Organizations | Location | People |
---|
article
Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inks
Abstract
To battle the high open-circuit voltage deficit (VOC,def) in kesterite (Cu<sub>2</sub>ZnSnS<sub>4</sub> or CZTS) solar cells, a current field of research relates to point defect engineering by cation substitution. For example, by partly replacing Cu with an element of a larger ionic radius, such as Ag, the degree of Cu/Zn disorder decreases, and likewise does the associated band tailing. In this paper, solution-processed (Ag<sub>1-x</sub>Cu<sub>x</sub>)<sub>2</sub>ZnSnS<sub>4</sub> (ACZTS) samples are prepared through the aprotic molecular ink approach using DMSO as the solvent. The successful incorporation of silver into the CZTS lattice is demonstrated with relatively high silver concentrations, namely Ag/(Ag+Cu) ratios of 13% and 26%. The best device was made with 13% Ag/(Ag+Cu) and had an efficiency of 4.9%. The samples are compared to the pure CZTS sample in terms of microstructure, phase distribution, photoluminescence, and device performance. In the XRD patterns, a decrease in the lattice parameter c/a ratio is observed for ACZTS, as well as significant peak splitting with Ag addition for several of the characteristic kesterite XRD reflections. In addition to the improvement in efficiency, other advantageous effects of Ag-incorporation include enhanced grain growth and an increased band gap. A too high concentration of Ag leads to the formation of secondary phases such as SnS and Ag2S as detected by XRD.<br/><br/>