People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
El-Kharouf, Ahmad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Experimental and Numerical Evaluation of Polymer Electrolyte Fuel Cells with Porous Foam Distributor
- 2022Evaluation of inkjet-printed spinel coatings on standard and surface nitrided ferritic stainless steels for interconnect application in solid oxide fuel cell devicescitations
- 2022Optimization of a ScCeSZ/GDC bi-layer electrolyte fabrication process for intermediate temperature solid oxide fuel cellscitations
- 2021Magnetically modified electrocatalysts for oxygen evolution reaction in proton exchange membrane (PEM) water electrolyzerscitations
- 2020Electrochemical performance and carbon resistance comparison between Sn, Cu, Ag, and Rh-doped Ni/ScCeSZ anode SOFCs operated by biogas
- 2020Formulation of Spinel based Inkjet Inks for Protective Layer Coatings in SOFC Interconnectscitations
- 2018Evaluation of Inkjet Printed Protective Layer Coatings for SOFC Interconnects
Places of action
Organizations | Location | People |
---|
article
Evaluation of inkjet-printed spinel coatings on standard and surface nitrided ferritic stainless steels for interconnect application in solid oxide fuel cell devices
Abstract
<p>Inkjet printing technology was employed for the application of protective layer coatings in SOFC metallic interconnects. Aqueous-based spinel coatings were inkjet-printed on standard and surface nitrided K41 ferritic stainless-steel substrates. Inkjet-printed substrates were exposed to high-temperature oxidation and Area Specific Resistance (ASR) tests for 1000 h at 700 °C in air with 3% volume humidity, simulating SOFC cathode environment. Performance of inkjet printed coatings and effect of nitriding stainless-steel substrates were evaluated based on chromium migration/retention and Area Specific Resistance. Sol-gel infiltration was introduced to develop a scaffold layer over the porous microstructure. With the ASR reduced to a level ∼60 mΩ cm<sup>2</sup> and chromium concentration in the getter (cathode) material below 1 atomic%, close to the detection threshold, the protective layers produced via inkjet printing present a promising solution for SOFC interconnector applications.</p>