Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khartcyzov, Georgii

  • Google
  • 3
  • 5
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Analysis of slag chemistry in WEEE smelting using experimental and modelling study of the “CuO0.5”-ZnO-FeO-FeO1.5-CaO-SiO2-AlO1.5 system in equilibrium with Cu metal5citations
  • 2023Experimental phase equilibria study and thermodynamic modelling of the “CuO0.5”-AlO1.5-SiO2 ternary system in equilibrium with metallic copper13citations
  • 2021Experimental phase equilibria studies in the “CuO0.5”-CaO-SiO2 ternary system in equilibrium with metallic copper17citations

Places of action

Chart of shared publication
Shevchenko, Maxim
3 / 48 shared
Jak, Evgueni
3 / 156 shared
Kleeberg, Cora
1 / 1 shared
Cheng, Siyu
2 / 7 shared
Hayes, Peter
2 / 115 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Shevchenko, Maxim
  • Jak, Evgueni
  • Kleeberg, Cora
  • Cheng, Siyu
  • Hayes, Peter
OrganizationsLocationPeople

article

Experimental phase equilibria studies in the “CuO0.5”-CaO-SiO2 ternary system in equilibrium with metallic copper

  • Shevchenko, Maxim
  • Khartcyzov, Georgii
  • Jak, Evgueni
  • Cheng, Siyu
  • Hayes, Peter
Abstract

Phase equilibria studies were undertaken on the “CuO0.5”-CaO-SiO2 system in equilibrium with metallic copper to provide fundamental information on the reactions taking place between slags and refractory materials in metallurgical furnaces. The liquidus isotherms between 1160 and 1706 °C in the tridymite and cristobalite (SiO2), cuprite (Cu2O), pseudowollastonite (CaSiO3), rankinite (Ca3Si2O7) and dicalcium silicate (Ca2SiO4) primary phase fields, and the 2-liquid miscibility gaps in the silica-rich corner and low-silica area of the system, were experimentally determined using the equilibration and quenching technique, followed by the electron probe X-ray microanalysis (EPMA) of phase compositions. The liquidus surface of the “CuO0.5”-CaO-SiO2 system has been constructed. The dissolution of copper oxide in the tridymite and cristobalite (SiO2) was shown to be negligible. The data obtained are used for the optimization of the thermodynamic database for the copper-containing systems.

Topics
  • surface
  • phase
  • copper
  • refractory
  • quenching
  • electron probe micro analysis