People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kruszewski, Mirosław
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Microstructure and Corrosion of Mg-Based Composites Produced from Custom-Made Powders of AZ31 and Ti6Al4V via Pulse Plasma Sinteringcitations
- 2024A comparative study of oxidation behavior of Co4Sb12 and Co4Sb10.8Se0.6Te0.6 skutterudite thermoelectric materials fabricated via fast SHS-PPS routecitations
- 2023Rapid fabrication of Se-modified skutterudites obtained via self-propagating high-temperature synthesis and pulse plasma sintering routecitations
- 2023In-depth analysis of the influence of bio-silica filler (Didymosphenia geminata frustules) on the properties of Mg matrix compositescitations
- 2022Thermoelectric properties of bismuth-doped magnesium silicide obtained by the self-propagating high-temperature synthesiscitations
- 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powderscitations
- 2022Influence of Ag particle shape on mechanical and thermal properties of TIM jointscitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2022Pressureless Direct Bonding of Au Metallized Substrate with Si Chips by Micro-Ag Particlescitations
- 2021Microstructure and Thermoelectric Properties of Doped FeSi2 with Addition of B4C Nanoparticlescitations
- 2020Thermoelectric properties of Cu2S obtained by high temperature synthesis and sintered by IHP methodcitations
- 2019Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sinteringcitations
- 2018Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquidcitations
- 2017Design of interfacial Cr 3 C 2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applicationscitations
- 2014Thermal conductivity enhancement of copper–diamond composites by sintering with chromium additivecitations
- 2011W/steel joint fabrication using the pulse plasma sintering (PPS) methodcitations
Places of action
Organizations | Location | People |
---|
article
Thermoelectric properties of Cu2S obtained by high temperature synthesis and sintered by IHP method
Abstract
Copper(I) sulphide is one of the most intensely studied superionic thermoelectric materials. High mobility ofcopper ions have positive impact on thermoelectric figure of merit, however it brings some stability drawbacks.In this work we compare thermoelectric properties of Cu2S synthesized under various conditions. All of theobtained powders were densified by induction hot pressing (IHP) at the same conditions. Phase composition,microstructure and thermoelectric homogeneity were investigated by X-ray diffraction (XRD), scanning electronmicroscopy (SEM) and scanning thermoelectric microprobe (STM), respectively. The influence of synthesis conditions on transport properties, i.e. electrical conductivity, thermal conductivity and Seebeck coefficient were examined in the temperature range 300–923 K. Based on those results, ZT parameter was calculated and the optimal method of the Cu2S synthesis chosen. The highest obtained ZTmax parameter equal to 0.68 at 923 K is 20–40% higher than in other works, where Cu2S was densified by SPS method.