People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
St-Pierre, Luc
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022An Abaqus plug-in to simulate fatigue crack growthcitations
- 2022Fracture of Honeycombs Produced by Additive Manufacturingcitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021An Abaqus plug-in to simulate fatigue crack growthcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 20203D printing of dense and porous TiO 2 structurescitations
- 20203D printing of dense and porous TiO2 structurescitations
- 2019Effect of weld modelling on crashworthiness optimizationcitations
- 2017The fracture toughness of octet-truss latticescitations
- 2015The dynamic indentation response of sandwich panels with a corrugated or Y-frame corecitations
- 2014The predicted compressive strength of a pyramidal lattice made from case hardened steel tubescitations
- 2012Sandwich Beams with Corrugated and Y-frame corescitations
Places of action
Organizations | Location | People |
---|
article
3D printing of dense and porous TiO2 structures
Abstract
Direct foam writing allows the fabrication of highly porous and hierarchical ceramic structures with high specific mechanical properties. This manufacturing technique, however, has mainly used stabilized Al2O3 foam inks. In this work, we pressent a novel foam ink based on TiO2. This ink uses polyvinyl alcohol (PVA) as a binder and a small amount of zinc as a frothing agent. We used this ink to produce cylindrical foam samples via direct foam writing. The foams had a porosity of up to 65% and a mean pore size of 180 μm, which is significantly larger than previously reported for direct foam writing with Al2O3. The foams were tested in compression and were found to have an elastic modulus of 4–6.3 GPa and a compressive strength of 92–112 MPa. These mechanical properties are similar to those of porous ceramics produced by conventional manufacturing routes. Therefore, this work represents a step forward by broadening the direct foam writing process to a wider range of porous ceramics. ; Peer reviewed