People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petit, Emmauel
Institut de Chimie de la Matière Condensée de Bordeaux
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Toward oxygen fully stoichiometric La1-xSrxCoO3 (0.5≤x≤0.9) perovskites: Itinerant magnetic mechanism more than double exchange one'scitations
- 2020Evaluation of chemical stability of conducting ceramics to protect metallic lithium in Li/S batteriescitations
- 2016Effect of Co substitution on the crystal and magnetic structure of SrFeO2.75-d : stabilization of the "314-type" oxygen vacancy ordered structure without A-site orderingcitations
Places of action
Organizations | Location | People |
---|
article
Toward oxygen fully stoichiometric La1-xSrxCoO3 (0.5≤x≤0.9) perovskites: Itinerant magnetic mechanism more than double exchange one's
Abstract
We report a two steps synthesis of strontium rich cobaltates La1-xSrxCoO3-δ (0.5 ≤ x ≤ 0.9) compounds. Following the standard solid state procedure, an oxygen intercalation process has been carried out. All the compounds show a perovskite related type structure. Samples have been characterized from chemical and structural point of view. The cubic “a” cell parameter saturates with the oxygen deficiency parameters δ that is controlled by the thermodynamic parameters (pO2; T). The magnetic properties studies were carried out before and after oxygen intercalation process and a continuous transfer from a localized character to an itinerant one's when oxygen is up taken is supported. A complete magnetic phase diagram with respect to temperature is proposed. One further evidence for attaining of Co+3.58 against Co+3.70 in La0.3Sr0.7CoO3-δ with the help of electrochemical oxidation that definitively both metal like behavior and higher than 280 K paramagnetic to ferromagnetic temperature phase transition unambiguously signed an oxygen stoichiometry close to 3 in La1-xSrxCoO3 perovskites serie.