Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krainova, D. A.

  • Google
  • 1
  • 6
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Non-crystallising glass sealants for SOFC39citations

Places of action

Chart of shared publication
Kuzmin, Anton V.
1 / 1 shared
Saetova, N. S.
1 / 1 shared
Eremin, V. A.
1 / 1 shared
Raskovalov, A. A.
1 / 1 shared
Ananyev, Maxim V.
1 / 1 shared
Steinberger-Wilckens, Robert
1 / 38 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kuzmin, Anton V.
  • Saetova, N. S.
  • Eremin, V. A.
  • Raskovalov, A. A.
  • Ananyev, Maxim V.
  • Steinberger-Wilckens, Robert
OrganizationsLocationPeople

article

Non-crystallising glass sealants for SOFC

  • Kuzmin, Anton V.
  • Saetova, N. S.
  • Eremin, V. A.
  • Raskovalov, A. A.
  • Ananyev, Maxim V.
  • Steinberger-Wilckens, Robert
  • Krainova, D. A.
Abstract

The joining of ceramic and metal (interconnect) parts is one of the main challenges in the development of solid oxide fuel cells (SOFC). A promising approach to solving this problem is the use of glassy sealants. In this work, we investigated the effect of yttria additions on the properties of SiO2–Al2O3–CaO–Na2O–ZrO2–Y2O3 glass sealants. An increase in the concentration of yttria is shown to reduce the tendency of the glasses under study to crystallisation. A glass containing 4 wt.% of Y2O3 is found to be amorphous, even after exposureat 850°C for 100 h. Moreover, the defectiveness of the glass microstructure, after sealing, is found to decrease along with a growth in the Y2O3 concentration. The developed noncrystallising sealant was successfully applied for joining a YSZ ceramic and an Fe-Ni-Co alloy having the phase transition of around 500°C. The use of the non-crystallising sealant allows us to join materials with very different thermal expansion coefficients and to avoid cracking under cooling, which might occur due to a large difference in thermal expansion coefficients.

Topics
  • impedance spectroscopy
  • microstructure
  • amorphous
  • phase
  • glass
  • glass
  • phase transition
  • thermal expansion
  • ceramic
  • joining