People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ratzker, Barak
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024MXene-CNC super performing composite films for flexible and degradable electronicscitations
- 2024The effect of coarse and fine Ti3SiC2 particle reinforcement in aluminum matrix compositescitations
- 2023MXene-Based Ceramic Nanocomposites Enabled by Pressure-Assisted Sinteringcitations
- 2023Exploring the capabilities of high-pressure spark plasma sintering (HPSPS)citations
- 2020Deformation in nanocrystalline ceramicscitations
- 2019Highly-doped Nd:YAG ceramics fabricated by conventional and high pressure SPScitations
- 2019Stress-enhanced dynamic grain growth during high-pressure spark plasma sintering of aluminacitations
- 2018Compression creep of copper under electric current studied by a spark plasma sintering (SPS) apparatuscitations
- 2018Transparent Polycrystalline Magnesium Aluminate Spinel Fabricated by Spark Plasma Sinteringcitations
- 2018High-pressure spark plasma sintering of silicon nitride with LiF additivecitations
- 2016Creep of polycrystalline magnesium aluminate spinel studied by an SPS apparatuscitations
Places of action
Organizations | Location | People |
---|
article
Highly-doped Nd:YAG ceramics fabricated by conventional and high pressure SPS
Abstract
<p>Spark plasma sintering (SPS) is an effective process for the fabrication of highly transparent oxide ceramics for photonic applications. In the present study, Nd-doped yttrium aluminum garnet (Nd:YAG) ceramics with various dopant concentrations (0.5–5 at.%) were fabricated at 1300–1400 °C using conventional SPS (60 MPa) and high pressure (300 MPa) conditions. The appearance, X-ray diffraction pattern, densification regime, microstructure, mechanical and optical properties were compared; the dependency on Nd concentration and sintering pressure is discussed. The pressure applied during the sintering process seemed to have only a minor effect on the luminescent properties, while the mechanical properties were superior for the samples sintered under high pressure conditions. The known concentration quenching phenomenon was observed and an equation for estimation of the Nd concentration, based on phosphorescence lifetime, is suggested.</p>