People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jarząbek, Dariusz
Institute of Fundamental Technological Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Role of the microstructure and the residual strains on the mechanical properties of cast tungsten carbide produced by different methods
- 2021Improved mechanical properties of W-Zr-B coatings deposited by hybrid RF magnetron – PLD methodcitations
- 2020Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputteringcitations
- 2020Size Effects of Hardness and Strain Rate Sensitivity in Amorphous Silicon Measured by Nanoindentationcitations
- 2020Enhancement of mechanical properties of vertically aligned carbon nanotube arrays due to N<sup>+</sup> ion irradiationcitations
- 2019Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide compositescitations
- 2018The impact of weak interfacial bonding strength on mechanical properties of metal matrix – ceramic reinforced compositescitations
- 2018The Influence of Alkali Metal Chloride Treatments on the Wear Resistance of Silicon Surfaces for Possible Use in MEMScitations
- 2018Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited compositescitations
- 2017Effect of metallic coating on the properties of copper-silicon carbide compositescitations
- 2017Investigations of interface properties in copper-silicon carbide compositescitations
- 2017Surface mechanical properties
- 2017The effect of metal coatings on the interfacial bonding strength of ceramics to copper in sintered Cu-SiC compositescitations
- 2016The Influence of the Particle Size on the Adhesion Between Ceramic Particles and Metal Matrix in MMC Compositescitations
- 2015The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix compositescitations
- 2015Influence of Alkali Ions on Tribological Properties of Silicon Surfacecitations
- 2014Elastic modulus and fracture strength evaluation on the nanoscale by scanning force microscope experimentscitations
- 2011Development of an experimental technique for testing rheological properties of ultrathin polymer films used in nanoimprint lithographycitations
- 2009Friction and adhesion of carbon nanotube brushescitations
Places of action
Organizations | Location | People |
---|
article
Influence of Cu coating of SiC particles on mechanical properties of Ni/SiC co-electrodeposited composites
Abstract
In this paper, the study of the mechanical properties of composites consisting of electrodeposited Ni and co-electrodeposited SiC particles coated with a thin Cu layer was presented. It was demonstrated that the coating allowed to increase the concentration of ceramic particles in the composite. Although the plating parameters were the same for both types of composites, the concentration of SiC was 15% for the composite containing coated particles (Ni/SiC-Cu) and 10% for the composite containing uncoated particles (Ni/SiC). Furthermore, tensile tests showed that the Ni/SiC-Cu samples exhibited higher Young's modulus than the pure electrodeposited Ni samples or Ni/SiC samples. The measured Young's modulus of the Ni/SiC-Cu composite was 250 ± 10 GPa. However, the ultimate tensile strength of the Ni/SiC-Cu composite was lower than that of pure Ni. To explain the mechanical behaviour of the Ni/SiC-Cu composite, the microstructure of the interface of this composite and its bonding strength were studied. Microstructure studies conducted using a scanning electron microscope (SEM) revealed that the SiC/Cu interface was smooth and of good quality whereas the Cu/Ni interface was rough but also of good quality. The measured bonding, normal, and shear strength values demonstrated that the SiC/Cu interface was weak, and that was the main reason for the low ultimate tensile strength of the composite. The shear strength of the SiC/Cu interface was measured using a novel method: micropillars shearing including atomic force microscopy (AFM). Finally, a simple finite element model of the Ni/SiC-Cu composite, based on cohesive elements, was developed.