People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duarte, Ana Sofia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023O4 - Exploring the biological properties and regenerative potential of biomaterials using cell culture models
- 2023O4 - Exploring the biological properties and regenerative potential of biomaterials using cell culture models
- 2017Bioactivity and antibacterial activity against E-coli of calcium-phosphate-based glassescitations
Places of action
Organizations | Location | People |
---|
article
Bioactivity and antibacterial activity against E-coli of calcium-phosphate-based glasses
Abstract
In this work we developed improved bioactive glasses and glass-ceramics for biomedical applications, investigating their in vitro bioactivity, biocompatibility and antibacterial properties against E-Coli. A melt-quenched bioactive glass of the SiO2-CaO-P2O5-MgO system was modified with the addition of 1 and 2 mol% Ag2O and the 1 mol% Ag2O-containing glasses were then heat treated to produce glass-ceramics. Surface modifications after soaking in SBF and ionic concentration changes showed that addition of silver and crystallization did not affect bioactivity although crystalline phases promoted a decrease in the degradation rate. Biocompatibility of all Ag-containing glasses and glass-ceramics was confirmed for certain samples concentrations. The antibacterial activity of the glasses against E-Coli was generally improved with decreasing particle size or increasing Ag2O. The Ag-containing glass-ceramics with higher content of crystalline phase appears as a promising biocompatible biocidal material with potential applications in bone-related diseases.