Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Foo, Kai Loong

  • Google
  • 2
  • 10
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Novel synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotubes: The effect of the heating temperature21citations
  • 2015Real-time detection by properties of tin dioxide for formaldehyde gas sensor4citations

Places of action

Chart of shared publication
Ruslinda, A. R.
2 / 6 shared
Nashaain, M. N.
1 / 1 shared
Voon, Chun Hong
2 / 8 shared
Lee, C. C.
1 / 2 shared
Tony, V. C. S.
1 / 1 shared
Hashim, Uda
2 / 15 shared
Ayub, Ramzan Mat
1 / 2 shared
Adzhri, R.
1 / 5 shared
Azman, A. H.
1 / 2 shared
Zaki, M.
1 / 3 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Ruslinda, A. R.
  • Nashaain, M. N.
  • Voon, Chun Hong
  • Lee, C. C.
  • Tony, V. C. S.
  • Hashim, Uda
  • Ayub, Ramzan Mat
  • Adzhri, R.
  • Azman, A. H.
  • Zaki, M.
OrganizationsLocationPeople

article

Novel synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotubes: The effect of the heating temperature

  • Foo, Kai Loong
  • Ruslinda, A. R.
  • Nashaain, M. N.
  • Voon, Chun Hong
  • Lee, C. C.
  • Tony, V. C. S.
  • Hashim, Uda
Abstract

ilicon carbide nanomaterials, especially silicon carbide nanotubes (SiCNTs), are known as excellent materials for high-power and high-temperature harsh environment electronics applications because of the unique properties of SiCNTs, such as a high thermal stability, good chemical inertness and excellent electronic properties. In this article, we presented a novel synthesis of SiCNTs by microwave heating a blend of silicon dioxide (SiO 2 ) and multi-walled carbon nanotubes (MWCNTs) at a ratio of 1:3 at temperatures of 1350 °C, 1400 °C and 1450 °C. The effects of different heating temperatures on the synthesis of SiCNTs were studied. X-ray diffraction revealed the presence of single phase β-SiC for syntheses conducted at 1400 °C and 1450 °C. Meanwhile, field-emission scanning electron microscopy images showed that no residual silicon dioxide or MWCNTs was observed with syntheses conducted at 1400 °C and 1450 °C. High-magnification transmission electron microscopy revealed that the tubular structure of the MWCNTs was preserved and that SiCNTs had a lattice fringe spacing of 0.261 nm corresponding to the (111) plane of β-SiC. Photoluminescence spectroscopy showed the presence of a β-SiC peak at a wavelength of 465 nm, and the band gap energy of SiCNTs was 2.67 eV. Fourier transform infrared spectroscopy analysis revealed that the absorption band of the Si–C bond was detected at 803 cm −1 . The purity of SiCNTs synthesized at 1400 °C and 1450 °C is high, as indicated by the low weight loss in thermo-gravimetric analysis.

Topics
  • impedance spectroscopy
  • photoluminescence
  • Carbon
  • phase
  • x-ray diffraction
  • nanotube
  • carbide
  • transmission electron microscopy
  • Silicon
  • Fourier transform infrared spectroscopy
  • gravimetric analysis
  • field-emission scanning electron microscopy