People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cieślak, Grzegorz
Institute of Precision Mechanics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Enhanced mechanical properties and microstructural stability of ultrafine-grained biodegradable Zn-Li-Mn-Mg-Cu alloys produced by rapid solifictaion and high-pressure torsioncitations
- 2024Enhanced mechanical properties and microstructural stability of ultrafine-grained biodegradable Zn–Li–Mn–Mg–Cu alloys produced by rapid solidification and high-pressure torsioncitations
- 2023Properties of Ni-B/B Composite Coatings Produced by Chemical Reductioncitations
- 2021Evaluation of Harmonic Structure Obtained in Mechanically Milled Powders and Pulse Plasma Sintered Compacts of Austenitic Steelcitations
- 2020Influence of heat treatment on properties of Ni-B/B composite coatingscitations
- 2019The influence of volume fraction of amorphous phase on corrosion resistance of Mg67Zn29Ca4alloycitations
- 2019Structure and mechanical properties of nanocrystalline Ni/Cu multilayer coatings produced by the electrocrystallization methodcitations
- 2019The impact of different volume fractions of crystalline structures on the electrochemical behaviour of Mg67Zn29Ca4alloys for biomedical applicationscitations
- 2019Demystifying the sluggish diffusion effect in high entropy alloyscitations
- 2019Glass forming ability of Zr48Cu36Al16-xAgx alloys determined by three different methodscitations
- 2018Preparation and properties of nanocrystalline Ni/graphene composite coatings deposited by electrochemical methodcitations
- 2018Studies of “sluggish diffusion” effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approachcitations
- 2018Effect of structure on corrosion resistance of Mg-Zn-Ca alloy
- 2017Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1)citations
- 2017Abrasion resistance of Ni-B/Si3N4 composite layers produced by electroless methodcitations
- 2016Preparation and mechanical properties of alumina composites reinforced with nickel-coated graphenecitations
Places of action
Organizations | Location | People |
---|
article
Preparation and mechanical properties of alumina composites reinforced with nickel-coated graphene
Abstract
<p>This paper discusses the influence of nickel-phosphorus coated graphene (Gn-Ni-P) and uncoated graphene (Gn) addition to an alumina matrix and its impact on the mechanical properties of obtained composites. The composites are prepared via powder processing and consolidated using the Spark Plasma Sintering (SPS) method. The effects of the addition of coated graphene and coating thickness on mechanical properties were evaluated. Physical properties such as relative density, hardness and fracture toughness were analyzed. Significant improvement of the fracture toughness (60%) for the composites with 2 vol% Gn-Ni-P compared to reference sample was observed. Moreover, 35% higher K<sub>IC</sub> was noticed for Gn-Ni-P reinforced composites than for Al<sub>2</sub>O<sub>3</sub>-Gn.</p>