Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yusoff, N.

  • Google
  • 2
  • 8
  • 91

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016A Facile Preparation of Titanium Dioxide-Iron Oxide@Silicon Dioxide Incorporated Reduced Graphene Oxide Nanohybrid for Electrooxidation of Methanol in Alkaline Medium24citations
  • 2015Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting67citations

Places of action

Chart of shared publication
Shahid, M. M.
1 / 2 shared
Pandikumar, A.
2 / 2 shared
Rameshkumar, P.
1 / 1 shared
Kumar, S. V.
2 / 2 shared
Rahman, M. A.
1 / 3 shared
Huang, N. M.
2 / 5 shared
Anamt, M. N.
1 / 1 shared
Marlinda, A. R.
1 / 2 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Shahid, M. M.
  • Pandikumar, A.
  • Rameshkumar, P.
  • Kumar, S. V.
  • Rahman, M. A.
  • Huang, N. M.
  • Anamt, M. N.
  • Marlinda, A. R.
OrganizationsLocationPeople

article

Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting

  • Pandikumar, A.
  • Kumar, S. V.
  • Yusoff, N.
  • Anamt, M. N.
  • Marlinda, A. R.
  • Huang, N. M.
Abstract

Herein, we report the hydrothermal synthesis of hetero-nanostructures of core-shell Fe3O4-ZnO nanoparticles with rGO sheets having different weight ratios and characterized by suitable techniques, including high-resolution transition electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), energy dispersive x-ray analysis (EDX), x-ray diffraction (XRD), Raman microscopy, photoluminescence spectroscopy (PL) and UV-vis spectroscopy. The as-prepared rGO/Fe3O4-ZnO nanocomposite materials were used for photoelectrochemical water splitting. The photoelectrochemical results showed that the photocurrent density increased from 520 μA/cm2 to 850 μA/cm2 at 1.23 VRHE with an increase in the (Zn(OH)2 precursor loading. The addition of graphene effectively enhanced the photoelectrochemical performance of the core-shell Fe3O4-ZnO hybrid material. We further demonstrated that the Zn(OH)2 content in the composite played an important role in the determination of the electronic interaction strength with rGO sheets, and the formation of the core-shell Fe3O4-ZnO complex helped to slow the recombination rate of electron-hole pairs, which also affected the photoelectrochemical performance. This rGO/Fe3O4-ZnO nanocomposite material could be a promising candidate for solar hydrogen production.

Topics
  • nanoparticle
  • nanocomposite
  • density
  • photoluminescence
  • scanning electron microscopy
  • x-ray diffraction
  • strength
  • Hydrogen
  • Energy-dispersive X-ray spectroscopy
  • Ultraviolet–visible spectroscopy
  • Raman microscopy