Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lee, Joong Hee

  • Google
  • 2
  • 8
  • 84

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium68citations
  • 2013A Facile One-Step Hydrothermal Synthesis of Graphene/CeO<sub>2</sub> Nanocomposite and its Catalytic Properties16citations

Places of action

Chart of shared publication
Barakat, Nasser A. M.
1 / 11 shared
Ghouri, Zafar Khan
1 / 20 shared
Obaid, M.
1 / 4 shared
Kim, Hak Yong
1 / 7 shared
Khanra, Partha
1 / 1 shared
Das, Ashok Kumar
1 / 2 shared
Kim, Nam Hoon
1 / 3 shared
Srivastava, Manish
1 / 5 shared
Chart of publication period
2014
2013

Co-Authors (by relevance)

  • Barakat, Nasser A. M.
  • Ghouri, Zafar Khan
  • Obaid, M.
  • Kim, Hak Yong
  • Khanra, Partha
  • Das, Ashok Kumar
  • Kim, Nam Hoon
  • Srivastava, Manish
OrganizationsLocationPeople

article

Co/CeO2-decorated carbon nanofibers as effective non-precious electro-catalyst for fuel cells application in alkaline medium

  • Barakat, Nasser A. M.
  • Lee, Joong Hee
  • Ghouri, Zafar Khan
  • Obaid, M.
  • Kim, Hak Yong
Abstract

In this study, Co/CeO2 decorated carbon nanofibers are introduced as effective electro-catalyst for methanol oxidation. Poly(vinyl alcohol) was used as carbon source due to its high carbon content characteristic as compared to many others polymer precursors for CNFs synthesis. Preparation of the introduced nanofibers could be achieved by calcination of electrospun nanofibers composed of cerium (III) acetate hydrate, cobalt (II) acetate tetra hydrate and poly(vinyl alcohol) in nitrogen environment at 700 °C. The produced sintered powder was characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), field-emission scanning electron microscopy (FESEM) equipped with rapid EDX (energy dispersive analysis of X-ray). The invoked characterization techniques indicated that the obtained material is carbon nanofibers decorated by Co/CeO2 nanoparticles. Investigation of the electrocatalytic activity of the introduced decorated nanofibers toward methanol oxidation indicated good performance as the corresponding current density increased with increasing methanol content in the alkaline medium. Interestingly, the introduced catalyst revealed negative onset potential (-50 mV vs. Ag/AgCl) which is a superior value among the reported non-precious electrocatalyst. Moreover, methanol oxidation takes place at relatively low applied voltage (180 mV vs. Ag/AgCl) which adds additional advantage for the introduced material. Overall, the introduced study opens new avenue for cheap and effective transition and rare earth family-based nanomaterials as non-precious catalyst for fuel cell application.

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • polymer
  • Carbon
  • x-ray diffraction
  • Nitrogen
  • transmission electron microscopy
  • cobalt
  • Energy-dispersive X-ray spectroscopy
  • current density
  • alcohol
  • Cerium
  • carbon content
  • field-emission scanning electron microscopy