People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boffa, Vittorio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluentscitations
- 2024A self-cleaning thermocatalytic membrane for bisphenol a abatement and fouling removalcitations
- 2023A Thermocatalytic Ceramic Membrane by Perovskite Incorporation in the Alumina Frameworkcitations
- 2023Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine Bcitations
- 2023Beneficial effect of cerium excess on in situ grown Sr0.86Ce0.14FeO3–CeO2 thermocatalysts for the degradation of bisphenol Acitations
- 2023Removal of As(III) via adsorption and photocatalytic oxidation with magnetic Fe-Cu nanocompositescitations
- 2023Beneficial effect of cerium excess on in situ grown Sr 0.86 Ce 0.14 FeO 3 –CeO 2 thermocatalysts for the degradation of bisphenol Acitations
- 2021Ceramic Processing of Silicon Carbide Membranes with the Aid of Aluminum Nitrate Nonahydrate: Preparation, Characterization, and Performancecitations
- 2021Hydrothermal preparation of B–TiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiationcitations
- 2021Degradation of organic micropollutants in water using a novel thermocatalytic membrane
- 2021A graphene oxide-based nanofiltration membrane for the catalytic abatement of organic pollutants in wastewater
- 2020Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatmentcitations
- 2020Enhanced Fabrication of Silicon Carbide Membranes for Wastewater Treatment:From Laboratory to Industrial Scalecitations
- 2018Catalytic activity of doped SrFeO3-δ perovskite-type oxide ceramics for degradation of water pollu-tants
- 2017Mutual-stabilization in chemically bonded graphene oxide–TiO2 heterostructures synthesized by a sol–gel approachcitations
- 2014Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubescitations
- 2013Toward the effective design of steam-stable silica-based membranescitations
- 2012Development of nanoporous TiO2 and SiC membranes for membrane filtration
- 2009Urban Wastes as Sources of Valuable Chemicals for Sustainable development: Surfactants, dispersing polymers and polyelectrolytes of biological origin
Places of action
Organizations | Location | People |
---|
article
Deposition of thin ultrafiltration membranes on commercial SiC microfiltration tubes
Abstract
Porous SiC based materials present high mechanical, chemical and thermal robustness, and thus have been largely applied to water-filtration technologies. In this study, commercial SiC microfiltration tubes with nominal pore size of 0.04 m were used as carrier for depositing thin aluminium oxide (Al2O3) ultrafiltration membranes. These ultrafiltration membranes were obtained by coating, drying and calcination of a colloidal suspension of boehmite particles. After calcination, the membrane material consisted of nano-sized Υ-Al2O3 crystallites and had a narrow pore size distribution with average pore size of 5.5 nm. Membrane thickness was tuned by repeating the coating of the boehmite sol. By doing so, we were able to reduce the defect density on the membrane surface, as evidenced by SEM analysis and by the significant reduction of water permeance after depositing the second γ-Al2O3 layer. After 5 times coating, a 5.6 µm thick γ-Al2O3 layer was obtained. This membrane shows retention of ~75% for polyethylene glycol molecules with Mn of 8 and 35 kDa, indicating that, despite their intrinsic surface roughness, commercial SiC microfiltration tubes can be applied as carrier for thin ultrafiltration membranes. This work also indicates that an improvement of the commercial SiC support surface smoothness may greatly enhance permeance and selectivity of Υ-Al2O3 ultrafiltration membranes by allowing the deposition of thinner defect-free layers.