Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zoegl, I.

  • Google
  • 1
  • 8
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Alkali activated steel slag – oil composites2citations

Places of action

Chart of shared publication
Jodlbauer, A.
1 / 1 shared
Wohlmuth, D.
1 / 1 shared
Wilkening, H. Martin R.
1 / 6 shared
Steindl, F.
1 / 2 shared
Vallazza-Grengg, Cyrill
1 / 26 shared
Mittermayr, F.
1 / 6 shared
Rudic, O.
1 / 2 shared
Saade, M. R. M.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Jodlbauer, A.
  • Wohlmuth, D.
  • Wilkening, H. Martin R.
  • Steindl, F.
  • Vallazza-Grengg, Cyrill
  • Mittermayr, F.
  • Rudic, O.
  • Saade, M. R. M.
OrganizationsLocationPeople

article

Alkali activated steel slag – oil composites

  • Jodlbauer, A.
  • Wohlmuth, D.
  • Zoegl, I.
  • Wilkening, H. Martin R.
  • Steindl, F.
  • Vallazza-Grengg, Cyrill
  • Mittermayr, F.
  • Rudic, O.
  • Saade, M. R. M.
Abstract

<p>This study describes advances in high-performance construction material development using a minimum of primary resources while enabling simultaneous CO<sub>2</sub> sequestration capacities. Two so far unutilized Austrian steel slags were combined with metakaolin and vegetable oil to produce alkali-activated materials exhibiting high compressive and flexural strength of up to 94 MPa and 13 MPa, respectively. This approach enabled a reduction in primary mineral resources of up to 82 wt%, with an average reduction in global warming potential (GWP) of 52 % compared to a traditional high-performance Portland cement material. Oil addition led to the formation of mainly water unsolvable metal soap phases precipitating within the pore spaces without significantly altering the phase assemblage and chemistry of the binder matrix, but further reducing the GWP by 74 %. The (heavy metal) leaching behavior coincides with that of traditional concrete materials and was even further reduced by the addition of oil.</p>

Topics
  • pore
  • mineral
  • phase
  • strength
  • steel
  • composite
  • cement
  • flexural strength
  • leaching