People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Tittelboom, Kim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024Early-age shrinkage assessment of cementitious materials : a critical reviewcitations
- 2024Non-destructive evaluation of ductile-porous versus brittle 3D printed vascular networks in self-healing concretecitations
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomographycitations
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomography
- 2023Production of calcium carbonate-precipitating biomass powder as self-healing additive in concrete and performance evaluation in mortarcitations
- 2023Development of a calcium sulfoaluminate-Portland cement binary system for twin-pipe 3D concrete printingcitations
- 2023Recent progress and technical challenges in using calcium sulfoaluminate (CSA) cementcitations
- 2023Bacteria-based self-healing concrete exposed to frost salt scalingcitations
- 2023Extending 3D concrete printing to hard rock tunnel linings : adhesion of fresh cementitious materials for different surface inclinationscitations
- 2023Influence of retarders on the hydration and rheology of calcium sulfo aluminate cement
- 2022Properties and testing of printed cement-based materials in hardened statecitations
- 2022Influence of 3D printed vascular networks in self-healing cementitious materials on water absorption studied via neutron imaging
- 2022Mechanical and microstructural properties of 3D printable concrete in the context of the twin-pipe pumping strategycitations
- 2022Stiffening controllable concrete modified with redispersible polymer powder for twin-pipe printingcitations
- 2022Stiffening controllable concrete modified with redispersible polymer powder for twin-pipe printingcitations
- 2022Transport properties of 3D printed cementitious materials with prolonged time gap between successive layerscitations
- 2022Transport properties of 3D printed cementitious materials with prolonged time gap between successive layerscitations
- 2022Adhesive properties of fresh cementitious materials as measured by the tack test
- 2022Using limestone powder as a carrier for the accelerator in extrusion-based 3D concrete printingcitations
- 2021An investigation of suitable healing agents for vascular-based self-healing in cementitious materialscitations
- 2021Manual application versus autonomous release of water repellent agent to prevent reinforcement corrosion in cracked concretecitations
- 20213D printing of cementitious materials with superabsorbent polymers : a durable solution?
- 2021Treatment with nano-silica and bacteria to restore the reduced bond strength between concrete and repair mortar caused by aggressive removal techniquescitations
- 2021Evaluation of test methods for self-healing concrete with macrocapsules by inter-laboratory testing
- 2021Evaluation of test methods for self-healing concrete with macrocapsules by inter-laboratory testing
- 2020Addressing the need for standardization of test methods for self-healing concrete : an inter-laboratory study on concrete with macrocapsulescitations
- 2020Effect of limestone powder substitution on fresh and hardened properties of 3D printable mortarcitations
- 2020Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsules.
- 2020Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsulescitations
- 2019Microstructural characterization of 3D printed cementitious materialscitations
- 2019Microstructural characterization of 3D printed cementitious materialscitations
- 2019Bond improvement between concrete substrates and repair systems by bacterial CaCO3 precipitation
- 2019Stiffening control of printable cement paste with flash setting admixture
- 2018Effect of Polyurethane Viscosity on Self-Healing Efficiency of Cementitious Materials Exposed to High Temperatures from Sun Radiationcitations
- 2018Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concrete
- 2016The microstructure of capsule containing self-healing materials: A micro-computed tomography studycitations
Places of action
Organizations | Location | People |
---|
article
Stiffening controllable concrete modified with redispersible polymer powder for twin-pipe printing
Abstract
To achieve stiffening control in 3D concrete printing, a twin-pipe pumping (TPP) system has been developed,where two streams of cementitious materials are pumped separately via two pumps and blended over a helicalstatic mixer right before extrusion. However, in addition to the interlayer region, the presence of striationsconsisting of unmixed limestone-based regions reduces the mechanical integrity of printed elements in earlierresearch on TPP strategy making use of a cement-based mixture and a limestone-based mixture. In this work, weexamined the use of redispersible polymer powder (RDP) as a means to improve the mechanical performance ofsuch 3D printed elements. Limestone powder in the limestone-based mixture was partially substituted bydifferent dosages of redispersible polymer powder (5, 10, and 15 %). Rheological behavior of the cement-basedmixture and the limestone-based mixture was evaluated. Further, we studied the effect of RDP addition on thehydration and the early age mechanical behavior of the combined mixtures. In the hardened state, specimensextracted from 3D printed wall elements were tested for flexural, compressive, and tensile strength. Its microstructure was examined using scanning electron microscopy. From the results of various studies conducted,although adding redispersible polymer powder would slightly reduce the very early age mechanical strength, itenhances the mechanical integrity in the hardened state due to film formation in the limestone-based mixture.