People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hendriks, Max
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Dynamic stiffness parameter assessment of cracked reinforced concrete beamscitations
- 2023X-ray micro-tomographic imaging and modelling of saline ice properties in concrete frost salt scaling experimentscitations
- 2022Revisiting concrete frost salt scalingcitations
- 2022An evaluation of the ice melting during concrete-ice abrasion experimentcitations
- 2022Lattice modeling and testing of aerated autoclaved concrete infilled framescitations
- 2020Inspection and assessment of corrosion in pretensioned concrete bridge girders exposed to coastal climatecitations
- 2019Topography studies of concrete abraded with icecitations
- 2018Concrete-ice abrasioncitations
- 2017Numerical modelling and seismic analysis of Dutch masonry structural components and buildings
- 2016Evaluation and improvement of calculation methods for large-scale concrete structures in service limit states
- 2012A tool for concrete performance assessment for ASR affected structures: An outlook
Places of action
Organizations | Location | People |
---|
article
Revisiting concrete frost salt scaling
Abstract
<p>We simulate the glue-spall stress due to mechanical interactions between a frozen saline solution (brine-ice composite) and a non-air entrained concrete surface including the impact of the micro-structure of the frozen solution. The presence of brine channels at the ice/concrete interface was found to be a prerequisite to induce stress during freezing and hence for scaling to occur. Pure ice does not result in scaling as it does not have brine channels. Furthermore, the size of the brine channels and their distribution was found determinant for the magnitude of the glue-spall stress in the concrete and the experimentally observed pessimum effect of a medium salt concentration was explained based on the change of the microstructure of the brine-ice composite at different salt concentrations and temperatures. The predicted results are in good agreement with the experimental observations and the few numerical demonstrations related to frost salt scaling in the literature.</p>