People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen, Hoang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024A critical review of magnesium silicate hydrate (M-S-H) phases for binder applicationscitations
- 2024Characterization of hydrated magnesium carbonate materials with synchrotron radiation-based scanning transmission X-ray spectromicroscopy
- 2023Cementitious phase quantification using deep learningcitations
- 2023Potato virus A particles – A versatile material for self-assembled nanopatterned surfacescitations
- 2023Thermodynamics of calcined clays used in cementitious binderscitations
- 2023Thermodynamics of calcined clays used in cementitious binders:origin to service life considerationscitations
- 2023MgO‐based cements – Current status and opportunitiescitations
- 2023Improving the electrical performance of Lithium-ion battery using SilicaCarbon anode through technique
- 2022Prediction of shear capacity of steel channel sections using machine learning algorithmscitations
- 2022Prediction of shear capacity of steel channel sections using machine learning algorithmscitations
- 2022Extract antibody and antigen names from biomedical literaturecitations
- 2021Phase evolution and mechanical performance of an ettringite-based binder during hydrothermal agingcitations
Places of action
Organizations | Location | People |
---|
article
Phase evolution and mechanical performance of an ettringite-based binder during hydrothermal aging
Abstract
ittle is known about the performance of ettringite-based binders in hydrothermal conditions. This investigation aims to gain insights into the phase evolution and corresponding mechanical performance of an ettringite-based binder considering crystallization pressure caused by late-reaction products. Additionally, the role of fiber reinforcement on the strength retention of the binder was investigated. When aged at an elevated temperature under water-saturated conditions, hard-burned MgO hydrated to form brucite. The precipitation and growth of the brucite crystals led to a crystallization pressure of approximately 200 MPa calculated using thermodynamic modelling. Damage was observed after 4 months of aging with cracks in the microstructure and eventually a failure at the macro scale. Ettringite remained stable at 60 °C due to the water-saturated conditions. Polypropylene fiber delayed crack propagation and thus reduced the damage caused by crystallization pressure. The fiber improved the flexural performance of composite attaining deflection-hardening behavior regardless of aging conditions.