People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saade, Marcella Ruschi Mendes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Functional and environmental performance optimization of Portland cement-based materials by combined mineral fillers
Abstract
This paper presents a systematic design approach for an efficient use of OPC in cement-based materials in combination with inert mineral fillers. Functional properties of pastes are linked to Life Cycle Assessment. A new method combination (“Mi-S-S”, mixing-shear-resistance, spread flow, strength test) was successfully applied to identify and characterize proper fillers and to find optimum mix-ratios for eco-efficient pastes consisting of OPC, very fine micro-fillers (MFs) and fine “eco-fillers” (EFs). In mixes, OPC/EF/MF optimized against reference-mixes (i) high packing density, (ii) desired spread-flow and (iii) sufficient compressive strength (CS) was reached, (iv) reducing the environmental impact. Relationships were found to link mix-design parameters (OPC-content, w/c-, w/p-ratio etc.) to pastes' functional requirements (spread flow and CS). An optimum filler content of 20–40 vol% was identified in eco-efficient OPC/EF/MF mixes. Optimized mortars exhibited reductions of up to 37% and 24% in CO2- and embodied energy-intensities, respectively, in comparison to standard OPC mortars.