People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Borisov, Sergey
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Transition metal azahemiporphycenes as singlet oxygen sensitizerscitations
- 2023Bright and Photostable TADF-Emitting Zirconium(IV) Pyridinedipyrrolide Complexes: Efficient Dyes for Decay Time-Based Temperature Sensing and Imagingcitations
- 2022Materials for optical oxygen sensing under high hydrostatic pressurecitations
- 2022Porous matrix materials in optical sensing of gaseous oxygencitations
- 2019High-resolution optical pH imaging of concrete exposed to chemically corrosive environmentscitations
- 2018Wide-range optical pH imaging of cementitious materials exposed to chemically corrosive environmentscitations
- 2018Mn4+-Doped magnesium titanate-a promising phosphor for self-referenced optical temperature sensingcitations
- 2018OPTICAL PH IMAGING OF CONCRETE EXPOSED TO CHEMICALLY CORROSIVE ENVIRONMENTS
- 2018Macroporous Polymeric Oxygen Scavenger Material
- 2018New opportunities for optical temperature sensing with Mn<sup>4+</sup>-doped magnesium titanate
- 2013Tuning the dynamic range and sensitivity of optical oxygen-sensors by employing differently substituted polystyrene-derivativescitations
Places of action
Organizations | Location | People |
---|
article
High-resolution optical pH imaging of concrete exposed to chemically corrosive environments
Abstract
Major types of chemical concrete degradation such as carbonation, leaching and acid attacks are strongly associated with decreasing internal, surface and/or external pH. Thus, a precise pH determination is crucial for the assessment regarding the degree of corrosion and corresponding development of prevention strategies. Conventional pH measurement methods for concrete, such as pH visualization via color change of phenolphthalein indicator, pH analyses of extracted pore solutions and surface pH characterizations using flat surface electrodes have proven to hold significant limitations and inadequacies. This contribution presents the application of sensor foils based on luminescent, pH sensitive dyes for quantification and imaging of the spatial distribution of surface pH of concrete within a pH range between 9.35 and 12.35. For this purpose, an imaging technique called time-domain dual lifetime referencing (t-DLR) was used. High-resolution pH images of concrete samples exposed to carbonation and biogenic acid corrosion were successfully recorded and consequently compared to the state-of-the-art methods for pH assessment on concrete-based construction materials.