People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baldermann, Andre
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Novel green technology for wastewater treatmentcitations
- 2022Solubility of C-A-S-H phases with high degree of heavy metal ion substitutioncitations
- 2022Microstructure Development in Artificially Cemented, Fine-Grained Soilscitations
- 2021A novel nZVI–bentonite nanocomposite to remove trichloroethene (TCE) from solutioncitations
- 2021Quantitative assessment of microstructural changes of hydrated cement blends due to leaching and carbonation, based on statistical analysis of image datacitations
- 2019Hydration processes of accelerated cementitious systems governing early strength development
- 2019Sulfate resistance of dry mix shotcretes with new binder composition
- 2019Mineralogical and microstructural response of hydrated cement blends to leachingcitations
- 2018Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °Ccitations
- 2017Environmental controls and reaction pathways of coupled de-dolomitization and thaumasite formationcitations
- 2016Concrete corrosion in an Austrian sewer system
Places of action
Organizations | Location | People |
---|
article
Environmental controls and reaction pathways of coupled de-dolomitization and thaumasite formation
Abstract
Deteriorated concrete and interstitial solutions (IS) were collected from Austrian tunnels to elucidate potential connections between de-dolomitization caused by coupled alkali carbonate reactions (ACR) and thaumasite form of sulfate attack (TSA). A conceptual reaction model for the portlandite–CSH phases–dolomite–calcium sulfate–calcite–brucite–thaumasite system was developed based on experimental data, hydrochemical modelling, IS chemistry and apparent concrete compositions. During the initial stage of sulfate attack, ettringite and gypsum formation weakened the concrete's microstructure and initiated ACR. Leaching of hydrated cement phases resulted in IS with a pH ~ 12-13, which promoted incongruent dolomite dissolution. Infiltration of Ca–SO4–type ground water into the de-dolomitization zone facilitated calcite and brucite neo-formations at 13 > pH > 10.5 during advanced states of concrete deterioration and subsequently resulted in thaumasite precipitation at pH ~ 8.7. In this contribution, the reaction mechanisms and environmental controls of de-dolomitization are discussed in relation to the durability of concrete under sulfate attack.