People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dayala, D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2018An integrated decision-support information system on the impact of extreme natural hazards on critical infrastructurecitations
- 2018Experimental Comparison of Novel CFRP Retrofit Schemes for Realistic Full-Scale RC Beam-Column Joints
- 2008Strength characteristics of hydraulic lime mortared brickworkcitations
- 2007Effects of carbonation on the pore structure of non-hydraulic lime mortarscitations
Places of action
Organizations | Location | People |
---|
article
Effects of carbonation on the pore structure of non-hydraulic lime mortars
Abstract
The pore structures of carbonated non-hydraulic lime mortars made with a range of different aggregates and concentrations of lime have been determined using mercury intrusion porosimetry (MIP). MIP data have been correlated with scanning electron microscopy images and other porosity data. During carbonation there is an increase in pore volume in the ~0.1 μm pore diameter range across all mortar types which is attributed to the transformation of portlandite to calcite. Also there is a monotonic increase in the volumes of pores with diameters below 0.03 μm. A model is proposed for the changes in pore structure caused by carbonation. This attributes the increase in the volume of sub 0.03 μm pores to the attachment of calcite crystals to the surface of aggregate particles, and in some cases to the surface of portlandite crystals. This phenomenon may explain the continuing presence of portlandite in mortars that, apparently, have fully carbonated.