People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Atkinson, A.
Engineering and Physical Sciences Research Council
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2020Understanding the coarsening and degradation in a nanoscale nickel gadolinia-doped-ceria electrode for high-temperature applications.citations
- 2019Hierarchical dual-porosity nanoscale nickel cermet electrode with high performance and stabilitycitations
- 2019Fabrication and characterisation of nanoscale Ni-CGO electrode from nanocomposite powders
- 2016Measurement of mechanical properties using slender cantilever beamscitations
- 2016Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopycitations
- 2016Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopycitations
- 2014Time and temperature dependence of the adhesion of oxide scales formed on phosphorus-containing steels during short term oxidationcitations
- 2011Using synchrotron X-ray nano-CT to characterize SOFC electrode microstructures in three-dimensions at operating temperaturecitations
- 2007Strength of soldered joints formed under microgravity conditionscitations
- 2006Factors affecting measurement of hydraulic conductivity in low strength cementitious materialscitations
- 2004Preliminary investigations into the use of secondary waste minerals as a novel cementitious landfill linercitations
- 2004Waste to contain waste – containment systems for pollution prevention
- 2004Selection of cementitious mixes as a barrier for landfill leachate containmentcitations
- 2001Novel composite landfill linerscitations
Places of action
Organizations | Location | People |
---|
article
Factors affecting measurement of hydraulic conductivity in low strength cementitious materials
Abstract
The hydraulic conductivity (water permeability) is one of the most significant transport properties of concrete and measuring it is a key step in predicting the performance of concrete as a barrier to the movement of fluids and ions. The transport properties are critical for the performance of the cover layer in protecting embedded reinforcement as waste containments barriers (which are considered in this paper) and other applications such as dams. The measurements are difficult to interpret due to experimental effects of sample size and changes of flow with time and the chemistry of the fluid used. The intrinsic permeability to water and synthetic leachate was determined and the relationship between the eluted volume passing and permeability was established for mortar mixtures having compressive strengths ranging from 5 to 20 MPa. Two mortar mixtures containing portland cement and one without portland cement and incorporating cement kiln dust, lagoon ash, and Ferrosilicate slag were tested. The effects of the sample size were also investigated. The results indicate a decrease in hydraulic conductivity for lower strength mixtures and a slight increase in permeability coefficient for the higher strength mixtures with increasing permeating volumes. Increasing the testing specimen size also slightly increased the coefficient of permeability in lower strength mixtures and decreased the coefficient in higher strength mixtures. The permeability coefficient did not change significantly with pore solution pressure.