People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Justo-Reinoso, Ismael
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Assessing the potential application of bacteria-based self-healing cementitious materials for enhancing durability of wastewater treatment infrastructurecitations
- 2022Air-entraining admixtures as a protection method for bacterial spores in self-healing cementitious compositescitations
- 2021Compositions for controlling microbially induced concrete corrosion
- 2021Influence of copper-impregnated basic oxygen furnace slag on the fresh- and hardened-state properties of antimicrobial mortarscitations
- 2020Dispersion and effects of metal impregnated granular activated carbon particles on the hydration of antimicrobial mortarscitations
- 2019Use of Sustainable Antimicrobial Aggregates for the In-Situ Inhibition of Biogenic Corrosion on Concrete Sewer Pipes.citations
- 2019Fine aggregate substitution with acidified granular activated carbon influences fresh-state and mechanical properties of ordinary Portland cement mortarscitations
- 2018Fine aggregate substitution by granular activated carbon can improve physical and mechanical properties of cement mortarscitations
- 2018Microstructural Responses of Cementitious Materials to Substitutions with Fine Antimicrobial Aggregates
Places of action
Organizations | Location | People |
---|
article
Assessing the potential application of bacteria-based self-healing cementitious materials for enhancing durability of wastewater treatment infrastructure
Abstract
Wastewater treatment plants (WWTPs) around the world are mainly built using concrete. The continuous exposure to wastewater affects the durability of concrete structures and requires costly maintenance or replacement. Concrete production and repair represents ∼8% of the global anthropogenic CO2 emissions due to the use of cement, thus contributing to climate change. Developing a more sustainable cementitious material is therefore required for this vital health infrastructure. In this study, the feasibility of using bacteria-based self-healing (BBSH) cementitious materials for WWTPs is assessed by exposing BBSH mortar prisms to a continuous municipal wastewater flow and comparing their self-healing capacity to equivalent mortar prisms exposed to tap water. Microscopy imaging, water-flow tests and micro-CT analyses were performed to evaluate the self-healing efficiency of the mortar prisms, while SEM-EDX and Raman spectroscopy were used to characterise the healing products. Our work represents the first systematic study of the healing potential of BBSH in mortar exposed to wastewater. The results indicate that the purposely added bacteria are able to induce calcium carbonate precipitation when exposed to wastewater conditions. Moreover, if additional sources of calcium and carbon are embedded within the cement matrix, the rich bacterial community inherently present in the wastewater is capable of inducing calcium carbonate precipitation, even if no bacteria are purposely added to the mortar. The results of this study offer promising avenues for the construction of more sustainable wastewater infrastructure, with the potential of significantly reducing costs and simplifying the production process of BBSH concretes for this specific application.