People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Unluer, Cise
University of Glasgow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Strain hardening magnesium-silicate-hydrate composites with extremely low fiber dosage of 0.5% by volumecitations
- 2023MgO‐based cements – Current status and opportunitiescitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO2 sequestrationcitations
- 2022New frontiers in sustainable cementscitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO 2 sequestrationcitations
- 2021Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seedingcitations
- 2021Mechanical and microstructural changes in reactive magnesium oxide cement-based concrete mixes subjected to high temperaturescitations
- 2021Thermal and mechanical performance of a novel 3D printed macro-encapsulation method for phase change materialscitations
- 2020Performance of reactive magnesia cement formulations containing fly ash and ground granulated blast-furnace slagcitations
- 2020Mechanical properties and flexural behavior of sustainable bamboo fiber-reinforced mortarcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO3 and NaClcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO 3 and NaClcitations
- 2018Development of MgO concrete with enhanced hydration and carbonation mechanismscitations
- 2017Performance and microstructural development of MgO-SiO 2 binders under different curing conditionscitations
- 2017Influence of nucleation seeding on the performance of carbonated MgO formulationscitations
- 2017Performance and microstructural development of MgO-SiO2 binders under different curing conditionscitations
Places of action
Organizations | Location | People |
---|
article
Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seeding
Abstract
<p>When exposed to carbonation, Na<sub>2</sub>CO<sub>3</sub>-activated slag (SCAS) concrete demonstrated 53% mass loss and 57% reduction in compressive strength due to the decalcification of C-(A)-S-H. Improvements in the carbonation resistance of SCAS mixes via the inclusion of hydromagnesite seeds (S) and reactive MgO (M) were reported in this study. The conversion of MgO into hydrated magnesium carbonates (HMCs) and the additional formation of hydrotalcite were observed in the presence of these additives. HMCs contributed to the binding network and limited the diffusion of CO<sub>2</sub> into the sample. The decalcification of C-(A)-S-H was retarded via the absorption of CO<sub>2</sub> in hydrotalcite, producing huntite. These changes in the reaction kinetics of samples involving M and S enabled the retention of hydration products and formation of additional carbonation products, leading to denser microstructures and ~40% increase in compressive strength after carbonation, which was ~10 times higher than the control sample (58 vs. 6 MPa).</p>