People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Figueiredo, Stefan Chaves
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Design and analyses of printable strain hardening cementitious composites with optimized particle size distributioncitations
- 2021Freeze-thaw resistance and air-void analysis of concrete with recycled glass-pozzolan using X-ray micro-tomographycitations
- 2021Chloride Ion Penetration into Cracked UHPFRC During Wetting-drying Cyclescitations
- 2021Assessment of freeze-thaw resistance of cement based concrete with ground glass – pozzolan through X-ray microtomography
- 2020Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixturecitations
- 2020Mechanical Behavior of Printed Strain Hardening Cementitious Compositescitations
- 2020Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materialscitations
- 20193D Concrete Printing for Structural Applications
- 2019On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Pastecitations
- 2019Effect of viscosity modifier admixture on Portland cement paste hydration and microstructurecitations
- 2019Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printingcitations
- 2019Frost Damage Progression Studied Through X-Ray tomography In Mortar With Phase Change Materials
- 2019The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printingcitations
- 2019An approach to develop printable strain hardening cementitious compositescitations
- 2019Numerical investigation of crack self-sealing in cement-based composites with superabsorbent polymerscitations
- 2018Mechanical properties of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2018Piezoresistive properties of cementitious composites reinforced by PVA fibrescitations
- 2018Durability of fibre reinforced cementitious composites
- 2018Modelling strategies for the study of crack self-sealing in mortar with superabsorbent polymers
- 2017Development of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2017Experimentally validated multi-scale modelling scheme of deformation and fracture of cement pastecitations
- 2016Induction healing of concrete reinforced by bitumen-coated steel fibrescitations
Places of action
Organizations | Location | People |
---|
article
Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materials
Abstract
<p>Recent studies have shown that concrete containing Phase Change Materials (PCM) with low transition temperatures may reduce the number of freeze/thaw cycles suffered by the cementitious composite in temperate climates. Nevertheless, the positive influence of such admixtures on the frost resistance of cement-based materials has not been directly shown, nor the negative. In this study, mortars with different contents of microencapsulated PCM by volume of cement paste were studied with regard to the progression of their internal and salt scaling damages during freeze/thaw cycles. X-ray micro tomography was used to monitor damage development and spatial distribution in the mortars. Furthermore, the pore system and microstructure of the PCM-modified mortars were characterized to unveil the causes of the observed macroscopic behavior during frost weathering. The results show that limited amounts of PCM in mortar, namely 10% by volume of cement paste, results beneficial for the frost and scaling resistance of the composite. Whereas, for larger PCM additions, like 30% by volume of paste, the changes in microstructure, porosity and mechanical strength brought in by these admixtures resulted in worsened performance against freeze/thawing cycles.</p>