People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Romero Rodriguez, Claudia
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022Surface effects of molten slag spills on calcium aluminate cement pastecitations
- 2022Modelling of capillary water absorption in sound and cracked concrete using a dual-lattice approachcitations
- 2021Characterization of air-void systems in 3D printed cementitious materials using optical image scanning and X-ray computed tomographycitations
- 2021Assessment of the self-healing capacity of cementitious materials through active thin sectionscitations
- 2021Modeling of microstructural effects on the creep of hardened cement paste using an experimentally informed lattice modelcitations
- 2021Accelerated carbonation of ordinary Portland cement paste and its effects on microstructure and transport properties
- 2020X-Ray Micro Tomography of Water Absorption by Superabsorbent Polymers in Mortarcitations
- 2020Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortarscitations
- 2020Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materialscitations
- 2020Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materialscitations
- 20193D Concrete Printing for Structural Applications
- 2019On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Pastecitations
- 2019Frost Damage Progression Studied Through X-Ray tomography In Mortar With Phase Change Materials
- 2019Numerical investigation of crack self-sealing in cement-based composites with superabsorbent polymerscitations
- 2018Modelling strategies for the study of crack self-sealing in mortar with superabsorbent polymers
- 2018Proceedings of the Symposium on Concrete Modelling
- 2016Induction healing of concrete reinforced by bitumen-coated steel fibrescitations
Places of action
Organizations | Location | People |
---|
article
Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materials
Abstract
<p>Recent studies have shown that concrete containing Phase Change Materials (PCM) with low transition temperatures may reduce the number of freeze/thaw cycles suffered by the cementitious composite in temperate climates. Nevertheless, the positive influence of such admixtures on the frost resistance of cement-based materials has not been directly shown, nor the negative. In this study, mortars with different contents of microencapsulated PCM by volume of cement paste were studied with regard to the progression of their internal and salt scaling damages during freeze/thaw cycles. X-ray micro tomography was used to monitor damage development and spatial distribution in the mortars. Furthermore, the pore system and microstructure of the PCM-modified mortars were characterized to unveil the causes of the observed macroscopic behavior during frost weathering. The results show that limited amounts of PCM in mortar, namely 10% by volume of cement paste, results beneficial for the frost and scaling resistance of the composite. Whereas, for larger PCM additions, like 30% by volume of paste, the changes in microstructure, porosity and mechanical strength brought in by these admixtures resulted in worsened performance against freeze/thawing cycles.</p>