People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Xu, Yading
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Printing path-dependent two-scale models for 3D printed planar auxetics by material extrusioncitations
- 2020Cementitious cellular composites with auxetic behaviorcitations
- 2020Mechanical behavior of printed strain hardening cementitious compositescitations
- 2020Tunable mechanical behavior of auxetic cementitious cellular composites (CCCs)citations
- 2020Auxetisch cementgebonden composiet
- 2020Auxetic Behavior of Cementitious Cellular Composites Under Uniaxial Compression and Cyclic Loadingcitations
- 2020Mechanical Behavior of Printed Strain Hardening Cementitious Compositescitations
- 2019Creating Strain Hardening Cementitious Composites (SHCCS) Through Use Of Additively Manufactured Polymeric Meshes As Reinforcementcitations
- 2019On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Pastecitations
- 2019Compression Behaviors Of Cementitious Cellular Composites With Negative Poisson’s Ratiocitations
- 2019An approach to develop printable strain hardening cementitious compositescitations
- 2018Flexural response of cementitious mortar bars reinforced by 3D printed polymeric mesh
Places of action
Organizations | Location | People |
---|
article
Cementitious cellular composites with auxetic behavior
Abstract
Auxetic behavior refers to material with negative Poisson's ratio. In this research, a new type of cementitious auxetic material is developed. A novel crack bridging auxetic mechanism is discovered which is in contrast with a local buckling mechanism commonly employed to trigger auxetic behavior. Taking advantage of 3D printing techniques, cementitious cellular composite (CCC) specimens with auxetic cellular structures were produced. Meanwhile, cementitious materials with different fiber content were used as constituent material. Uniaxial compression and cyclic loading tests were performed on the CCCs. Experiments show that with proper constituent material, CCCs can exhibit auxetic behavior which is induced by crack bridging process of the cementitious constituent material. In addition, strain hardening behavior can be identified in the stress-strain curve under uniaxial compression and consequently high specific energy absorption is obtained. Furthermore, 2.5% of reversible deformation which is significantly higher than conventional cementitious materials under cyclic loading is obtained within 25,000 cycles. Obvious fatigue damage is observed in the first 3000 cycles, afterwards signs of mechanical properties recovering can be found. The discovered auxetic mechanism indicates a new designing direction for brittle materials to achieve auxetic behaviors.