People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Margetts, Lee
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Actionable workflows for fusion neutronics simulation.
- 2021Non-local modelling of heat conduction with phase change
- 20204D characterisation of damage and fracture mechanisms of ultra high performance fibre reinforced concrete by in-situ micro X-Ray computed tomography testscitations
- 20184D Imaging of Soft Tissue and Implanted Biomaterial Mechanics; A Barbed-Suture Case Study for Tendon Repaircitations
- 2018Modelling fracture in heterogeneous materials on HPC systems using a hybrid MPI/Fortran coarray multi-scale CAFE frameworkcitations
- 2018Multiscale CAFE for fracture in heterogeneous materials under dynamic loading conditions
- 2017Multi-scale CAFE framework for simulating fracture in heterogeneous materials implemented in fortran co-arrays and MPIcitations
- 2017Micro X-ray Computed Tomography Image-based Two-scale Homogenisation of Ultra High Performance Fibre Reinforced Concretecitations
- 2009A finite element approach to the biomechanics of dromaeosaurid dinosaur claws
- 2008Investigating predictive capabilities of image-based modeling for woven composites in a scalable computing environment
Places of action
Organizations | Location | People |
---|
article
4D characterisation of damage and fracture mechanisms of ultra high performance fibre reinforced concrete by in-situ micro X-Ray computed tomography tests
Abstract
In-situ microscale X-ray computed tomography (μXCT) tests of ultra high performance fibre reinforced concrete (UHPFRC) specimens were conducted under progressive wedge-split loading for the first time. A sequence of μXCT images of two 40 × 20 × 25 mm notched specimens were obtained at different loads with a voxel resolution of 16.9μm. Through 3D image processing, the UHPFRC's internal microstructures are characterised and the complicated damage and fracture mechanisms are visualised, including bridging, bending and pull-out of fibres, spalling and fracture of matrix, and evolution of micro-cracks into macro-cracks. The deformed μXCT images clearly show the significant effects of steel fibres: suppressing microcracks from propagation, leading to dispersed multiple cracks, and contributing to deviate the originally vertical crack towards the overall fibre orientation across the cracks. It is concluded the in-situ μXCT tests provide an unrivalled tool for elucidation of complicated damage and fracture evolution in UHPFRC with high-resolution 3D images that will be invaluable for validation of numerical models and optimisation of the material's micro-structures.