People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Figueiredo, Stefan Chaves
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Design and analyses of printable strain hardening cementitious composites with optimized particle size distributioncitations
- 2021Freeze-thaw resistance and air-void analysis of concrete with recycled glass-pozzolan using X-ray micro-tomographycitations
- 2021Chloride Ion Penetration into Cracked UHPFRC During Wetting-drying Cyclescitations
- 2021Assessment of freeze-thaw resistance of cement based concrete with ground glass – pozzolan through X-ray microtomography
- 2020Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixturecitations
- 2020Mechanical Behavior of Printed Strain Hardening Cementitious Compositescitations
- 2020Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materialscitations
- 20193D Concrete Printing for Structural Applications
- 2019On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Pastecitations
- 2019Effect of viscosity modifier admixture on Portland cement paste hydration and microstructurecitations
- 2019Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printingcitations
- 2019Frost Damage Progression Studied Through X-Ray tomography In Mortar With Phase Change Materials
- 2019The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printingcitations
- 2019An approach to develop printable strain hardening cementitious compositescitations
- 2019Numerical investigation of crack self-sealing in cement-based composites with superabsorbent polymerscitations
- 2018Mechanical properties of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2018Piezoresistive properties of cementitious composites reinforced by PVA fibrescitations
- 2018Durability of fibre reinforced cementitious composites
- 2018Modelling strategies for the study of crack self-sealing in mortar with superabsorbent polymers
- 2017Development of ductile cementitious composites incorporating microencapsulated phase change materialscitations
- 2017Experimentally validated multi-scale modelling scheme of deformation and fracture of cement pastecitations
- 2016Induction healing of concrete reinforced by bitumen-coated steel fibrescitations
Places of action
Organizations | Location | People |
---|
article
Numerical investigation of crack self-sealing in cement-based composites with superabsorbent polymers
Abstract
Recently the concept of crack self-sealing has been investigated as a method to prevent degradation and/or loss of functionality of cracked concrete elements. To obtain self-sealing effect in the crack, water swelling admixtures such as superabsorbent polymers (SAP) are added into the cementitious mix. In order to design such self-sealing systems in an efficient way, a three-dimensional mesoscale numerical model is proposed to simulate capillary absorption of water in sound and cracked cement-based materials containing SAP. The numerical results yield the moisture content distribution in cracked and sound domain, as well as the absorption and swelling of SAP embedded in the matrix and in the crack. The performance of the model was validated by using experimental data from the literature, as well as experimentally-informed input parameters. The validated model was then used to investigate the role of SAP properties and dosage in cementitious mixtures, on the water penetration into the material from cracks. Furthermore different crack widths were considered in the simulations. The model shows good agreement with experimental results. From the numerical investigation guidelines are suggested for the design of the studied composites.