People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Romero Rodriguez, Claudia
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022Surface effects of molten slag spills on calcium aluminate cement pastecitations
- 2022Modelling of capillary water absorption in sound and cracked concrete using a dual-lattice approachcitations
- 2021Characterization of air-void systems in 3D printed cementitious materials using optical image scanning and X-ray computed tomographycitations
- 2021Assessment of the self-healing capacity of cementitious materials through active thin sectionscitations
- 2021Modeling of microstructural effects on the creep of hardened cement paste using an experimentally informed lattice modelcitations
- 2021Accelerated carbonation of ordinary Portland cement paste and its effects on microstructure and transport properties
- 2020X-Ray Micro Tomography of Water Absorption by Superabsorbent Polymers in Mortarcitations
- 2020Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortarscitations
- 2020Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materialscitations
- 2020Fundamental investigation on the frost resistance of mortar with microencapsulated phase change materialscitations
- 20193D Concrete Printing for Structural Applications
- 2019On The Role Of Soft Inclusions On The Fracture Behaviour Of Cement Pastecitations
- 2019Frost Damage Progression Studied Through X-Ray tomography In Mortar With Phase Change Materials
- 2019Numerical investigation of crack self-sealing in cement-based composites with superabsorbent polymerscitations
- 2018Modelling strategies for the study of crack self-sealing in mortar with superabsorbent polymers
- 2018Proceedings of the Symposium on Concrete Modelling
- 2016Induction healing of concrete reinforced by bitumen-coated steel fibrescitations
Places of action
Organizations | Location | People |
---|
article
Numerical investigation of crack self-sealing in cement-based composites with superabsorbent polymers
Abstract
Recently the concept of crack self-sealing has been investigated as a method to prevent degradation and/or loss of functionality of cracked concrete elements. To obtain self-sealing effect in the crack, water swelling admixtures such as superabsorbent polymers (SAP) are added into the cementitious mix. In order to design such self-sealing systems in an efficient way, a three-dimensional mesoscale numerical model is proposed to simulate capillary absorption of water in sound and cracked cement-based materials containing SAP. The numerical results yield the moisture content distribution in cracked and sound domain, as well as the absorption and swelling of SAP embedded in the matrix and in the crack. The performance of the model was validated by using experimental data from the literature, as well as experimentally-informed input parameters. The validated model was then used to investigate the role of SAP properties and dosage in cementitious mixtures, on the water penetration into the material from cracks. Furthermore different crack widths were considered in the simulations. The model shows good agreement with experimental results. From the numerical investigation guidelines are suggested for the design of the studied composites.