People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vervloet, Jolien
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2020Experimental and numerical evaluation of textile reinforced cement (TRC) sandwich walls in compression: A geometrical studycitations
- 2019Experimental investigation of the buckling behaviour of textile reinforced cement sandwich panels with varying face thickness using Digital Image Correlationcitations
- 2019Fatigue Behaviour of Textile Reinforced Cementitious Composites and Their Application in Sandwich Elementscitations
- 2019Validation of a Numerical Bending Model for Sandwich Beams with Textile-Reinforced Cement Faces by Means of Digital Image Correlationcitations
- 2019Experimental study and benchmarking of 3D textile reinforced cement compositescitations
- 2019Durability of sandwich beams with textile reinforced cementitious composite facescitations
- 2018Design and experimental investigation of textile reinforced cement sandwich panel ends
- 2018Investigation of 3D TRC’s by Means of Three Point Bending Tests on Short Beam Specimens
- 2018Characterization of the Bond between Textile Reinforced Cement and Extruded Polystyrene by Shear Test
- 2018Fibre textile reinforced cementitious composites: experimental investigation and modelling of three point bending tests on short beams
- 2018Repeated loading of cement composite sandwich beams
- 2018Modelling and experimental verification of flexural behaviour of textile reinforced cementitious composite sandwich renovation panels
- 2018Influence of environmental loading on the tensile and cracking behaviour of textile reinforced cementitious compositescitations
- 2018Experimental investigation and benchmarking of 3D textile reinforced cementitious compositescitations
- 2018Buckling behaviour of structural insulating sandwich walls with textile reinforced cement facescitations
- 2018Investigation of 3D TRC's by Means of Three Point Bending Tests on Short Beam Specimens
- 2018Investigation of the bond properties between textile reinforced concrete and extruded polystyrene foam
- 2018Influence of weathering conditions on TRC sandwich renovation panelscitations
- 2017Durability study of textile reinforced cementitious composites with low fiber volume fraction
- 20173D fibre textiles as reinforcement for lightweight concrete structures
- 2017AE monitoring of 3D textile reinforced cements
- 2017Axial loading of small sandwich panels with textile reinforced cementitious faces monitored by DIC
Places of action
Organizations | Location | People |
---|
article
Experimental study and benchmarking of 3D textile reinforced cement composites
Abstract
Textile Reinforced Cement composites (TRCs) have become a key research topic when it comes to lightweight alternative construction materials for traditional concrete industry. While most of the research performed on TRCs combines a cementitious matrix material with 2D textile fabrics, this paper investigates the mechanical behaviour of TRCs reinforced with 3D textile fabrics. The main goal is to investigate the influence of the transversal fibre that is connecting the fibre layers and is typical for 3D textiles, on the tensile and flexural properties of the TRC. Therefore two textile fabric architectures were compared, firstly an unaltered 3D textile fabric and secondly a tensile-equivalent 2D textile fabrics with equal in-plane textile reinforcement. An experimental campaign in tension and bending was performed on four different TRC layups. When comparing the bending behaviour of the unaltered 3D-TRCs with the 2D alternatives, an increase in stiffness in the post-cracking stage was observed, while no influence was observed in tension. The experimental results were also compared with numerical predictions of the 2D-TRCs to put in evidence the influence of the 3D architecture.