People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cnudde, Veerle
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomographycitations
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomographycitations
- 2023Assessment of pore structure characteristics and tortuosity of 3D printed concrete using mercury intrusion porosimetry and X-ray tomography
- 2023An automated wireless system for monitoring concrete structures based on embedded electrical resistivity sensors : data transmission and effects on concrete propertiescitations
- 2022Transport properties of 3D printed cementitious materials with prolonged time gap between successive layerscitations
- 2022Transport properties of 3D printed cementitious materials with prolonged time gap between successive layerscitations
- 2021Manual application versus autonomous release of water repellent agent to prevent reinforcement corrosion in cracked concretecitations
- 2021Manual application versus autonomous release of water repellent agent to prevent reinforcement corrosion in cracked concrete
- 2021Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradationcitations
- 2021Kinematic and mechanical response of dry woven fabrics in through-thickness compression: Virtual fiber modeling with mesh overlay technique and experimental validationcitations
- 2020X-Ray Micro Tomography of Water Absorption by Superabsorbent Polymers in Mortarcitations
- 2020Event-based contact angle measurements inside porous media using time-resolved micro-computed tomographycitations
- 2019Multiscale characterization of glass wools using X-ray micro-CTcitations
- 2019Microstructural characterization of 3D printed cementitious materialscitations
- 2019Microstructural characterization of 3D printed cementitious materialscitations
- 2019Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomographycitations
- 2019Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomographycitations
- 2019The impact of post depositional alterations on the preservation of microwear traces
- 2018Effect of Polyurethane Viscosity on Self-Healing Efficiency of Cementitious Materials Exposed to High Temperatures from Sun Radiationcitations
- 2018Effect of Polyurethane Viscosity on Self-Healing Efficiency of Cementitious Materials Exposed to High Temperatures from Sun Radiationcitations
- 2018Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concrete
- 2018Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concretecitations
- 2018Methane bubble growth and migration in aquatic sediments observed by X-ray mu CTcitations
- 2016Capillary water absorption in cracked and uncracked mortar - A comparison between experimental study and finite element analysiscitations
- 2016The microstructure of capsule containing self-healing materials: A micro-computed tomography studycitations
- 2016X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymerscitations
- 2016Experimental study of the ageing of building stones exposed to sulfurous and nitric acid atmospheres
- 2015Autogenous healing of cementitious materials promoted by superabsorbent polymers studied by means of X-ray computed microtomography
- 2013Compatibility assessment for repair mortars
- 2012X-ray microtomography (mu-CT) to evaluate microstructure of mortars containing low density additionscitations
- 2010X-ray tomography to visualise concrete degradation and (self)-healing
- 2009Porosity and microstructure characterization of building stones and concretes
- 2009Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-substituted hydroxypropylcellulose
- 2009Multi-resolution X-ray CT research applied on geomaterials
- 2008X-ray computed microtomography on cementitious materials
- 2008Comparison of different nano- and micro-focus X-ray computed tomography set-ups for the visualization of the soil microstructure and soil organic matter
- 2007Strain monitoring in thermoplastic composites with optical fiber sensors: embedding process, visualization with micro-tomography, and fatigue results
- 2006Detection and distribution analysis of organosilicon compounds in wood by means of SEM-EDX and micro-CTcitations
- 2005A sensitivity study for the visualisation of bacterial weathering of concrete and stone with computerised X-ray microtomographycitations
Places of action
Organizations | Location | People |
---|
article
Poly(methyl methacrylate) capsules as an alternative to the ‘’proof-of-concept’’ glass capsules used in self-healing concrete
Abstract
<p>Development of suitable capsules is essential to achieve self-healing by encapsulation. In the context of self-healing concrete, capsules that can be easily mixed into concrete and release the healing agent when cracking occurs are ideally required. The optimization of these properties would allow for a successful implementation at large scale in practical (concrete) applications. In the present work, the suitability of polymeric cylindrical capsules made of poly(methyl methacrylate) (PMMA) to carry healing agent in self-healing concrete has been evaluated. An innovative method to assess more easily the capsules survival during concrete mixing was developed. This method is based on the evaluation of the setting behavior of concrete containing capsules filled with setting accelerator. Capsules with a wall thickness of 0.7 mm were able to resist the concrete mixing process and to rupture at relatively small crack widths (116 μm) after applying a surface treatment to increase the adhesion between the capsules and the cementitious matrix. Next, the self-healing efficiency of the encapsulation materials (glass or PMMA) was evaluated on real-scale concrete beams. The results showed that cracked concrete beams with mixed-in capsules (glass or PMMA) filled with water-repellent agent showed higher resistance against chloride ingress compared to plain cracked concrete beams. PMMA capsules showed a lower self-healing efficiency (in relation to chloride ingress) compared to glass due to a less favorable distribution of the capsules in the concrete. However, concrete containing glass capsules is susceptible towards alkali-silica reaction. Although optimization of the PMMA capsules is still necessary to improve their distribution in concrete and achieve higher self-healing efficiency, the obtained results indicate that these capsules could be a promising solution towards self-healing concrete.</p>