Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Milheiro Oliveira, P.

  • Google
  • 2
  • 6
  • 77

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Design of self-compacting high-performance concrete: Study of mortar phase30citations
  • 2017Estimation of the tensile strength of UHPFRC layers based on non-destructive assessment of the fibre content and orientation47citations

Places of action

Chart of shared publication
Nunes, S.
2 / 9 shared
Maia, L.
1 / 3 shared
Matos, Am
1 / 3 shared
Pimentel, M.
1 / 4 shared
Ribeiro, F.
1 / 6 shared
Carvalho, A.
1 / 11 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Nunes, S.
  • Maia, L.
  • Matos, Am
  • Pimentel, M.
  • Ribeiro, F.
  • Carvalho, A.
OrganizationsLocationPeople

article

Estimation of the tensile strength of UHPFRC layers based on non-destructive assessment of the fibre content and orientation

  • Pimentel, M.
  • Nunes, S.
  • Milheiro Oliveira, P.
  • Ribeiro, F.
  • Carvalho, A.
Abstract

In the present study we propose a procedure for estimating the tensile strength of thin ultra-high performance fibre-reinforced cement-based composite (UHPFRC) layers, which eliminates the need of extracting cores or samples from the structure. This procedure relies on a non-destructive testing (NDT) method based on the ferromagnetic properties of the steel fibres for estimating the parameters of the underlying physical model, namely, the fibre content and the fibre orientation factor, and on laboratory tensile tests for estimating the equivalent rigid-plastic fibre-to-matrix bond strength. An experimental program was developed for establishing the relation between the NUT measurements and the orientation parameters determined from image analysis. Following the proposed procedure, the tensile strength of 36 specimens with varying fibre content and fibre orientation distributions is estimated based on the magnetic measurements and compared to experimental results. The good correlation that is found demonstrates the significance of the proposed NDT method in the implementation of quality control procedures of thin UHPFRC elements/layers.

Topics
  • impedance spectroscopy
  • polymer
  • strength
  • steel
  • composite
  • cement
  • tensile strength