People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen, Tien-Dung
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO2 sequestrationcitations
- 2022New frontiers in sustainable cementscitations
- 2022Potential additives for magnesia-based concrete with enhanced performance and propensity for CO 2 sequestrationcitations
- 2021Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seedingcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO3 and NaClcitations
- 2018Improving the Carbonation of Reactive MgO Cement Concrete via the Use of NaHCO 3 and NaClcitations
- 2018Development of MgO concrete with enhanced hydration and carbonation mechanismscitations
- 2017Performance and microstructural development of MgO-SiO 2 binders under different curing conditionscitations
- 2017Influence of nucleation seeding on the performance of carbonated MgO formulationscitations
- 2017Performance and microstructural development of MgO-SiO2 binders under different curing conditionscitations
- 2016Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC bindercitations
- 2016Improving the performance of reactive MgO cement-based concrete mixescitations
- 2016Sulfate resistance of low energy SFC no-cement mortarcitations
- 2015Influence of circulating fluidized bed combustion (CFBC) fly ash on properties of modified high volume low calcium fly ash (HVFA) cement paste
Places of action
Organizations | Location | People |
---|
article
Influence of nucleation seeding on the performance of carbonated MgO formulations
Abstract
The continuation of the hydration and carbonation reactions within reactive MgO cement formulations is inhibited by the formation of hydrate and carbonate phases around MgO particles, resulting in a low MgO utility and limited mechanical performance. This study introduces carbonate seeds into the pore space of MgO-based concrete mixes to enable the nucleation and growth of carbonates on the seed surfaces. The influence of seeds on the hydration and carbonation capability, mechanical performance and microstructural development was evaluated through isothermal calorimetry, water absorption and compressive strength measurements, along with TGA, XRD and SEM analyses. The introduction of ≤1% seed within the initial mix design increased the carbonate phase content and improved carbonation degree by up to 96% by increasing the availability of Mg(OH)2 for carbonation. The dense formation of carbonates in seeded samples enabled improved microstructures and 28-day strengths of 64 MPa, which were 33% higher than unseeded samples.