People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dyer, Thomas Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Fungal colonization and biomineralization for bioprotection of concretecitations
- 2021Potential of Weathered Blast Furnace Slag for use as an Addition in Concretecitations
- 2021Evaluation of low carbon mortar matrices reinforced with natural fibres
- 2019Pozzolanas and pozzolanic materialscitations
- 2017Influence of cement type on resistance to attack from two carboxylic acidscitations
- 2013Interaction of phenolic brownfield contaminants with hydrating Portland cementcitations
- 2011Characterisation of two chemical compounds formed between hydrated portland cement and benzene-1,2-diol (pyrocatechol)citations
- 2011Hydration chemistry of sewage sludge ash used as a cement componentcitations
- 2009Exposure of Portland cement to multiple trace metal loadingscitations
- 2006Influence of solid solutions on chloride leaching from wasteformscitations
- 2004Hydration reactions of cement combinations containing vitrified incinerator fly ashcitations
- 2004Maximising opportunities for recycling glass
- 2003Use of refuse-derived fuel ash as a cement component in mortar
- 2001Chemical reactions of glass cullet used as a cement componentcitations
Places of action
Organizations | Location | People |
---|
article
Influence of cement type on resistance to attack from two carboxylic acids
Abstract
In a number of circumstances, concrete may be required to possess resistance to organic acids. These are frequently carboxylic acids. This paper examines the effect of two such acids – acetic and butyric – on hardened cement paste specimens made from three cement types – Portland cement (PC), a combination of PC and fly ash (PC/FA), and a calcium sulfoaluminate cement (CSA). Specimens were exposed to solutions of the acids and deterioration characterized in terms of mass loss and pH measurements, micro-CT scanning, and chemical and mineralogical analysis. Additionally geochemical modelling was used to further examine the mechanisms involved during acid attack. The CSA cement was most resistant to attack, with the PC paste displaying the least resistance. This resistance has been partly attributed to the higher acid neutralization capacity of CSA cement. However, this paper demonstrates that the enhanced performance is most probably the result of a denser microstructure.<br/><br/>