People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Suryanto, Benny
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Probabilistic approach to the sustainability assessment of reinforced concrete structures in conditions of climate changecitations
- 2023Features of Immittance Spectra as Performance Indicators for Cement-Based Concretescitations
- 2021The electro-mechanical tensile properties of an engineered cementitious compositecitations
- 2021Low Carbon Recycled Aggregate Concrete
- 2021Cover-zone protective qualities under corrosive environmentscitations
- 2020Moisture movement within concrete exposed to simulated hot arid/semi-arid conditionscitations
- 2020Assessing the performance and transport properties of concrete using electrical property measurementscitations
- 2019Conduction, relaxation and complex impedance studies on Portland cement mortars during freezing and thawingcitations
- 2019In-Situ Conductivity Measurements to Monitor Moisture Profiles of Concrete in Hot Climates
- 2018Impedance measurements on an engineered cementitious composite: a critical evaluation of testing protocolscitations
- 2018Performance assessment of reinforced concrete after long-term exposure to a marine environmentcitations
- 2018Transient moisture profiles in cover-zone concrete during water absorptioncitations
- 2017Characterization of fly-ash using electrochemical impedance spectroscopycitations
- 2017A Testing Methodology for Performance-Based Specificationcitations
- 2017Frequency- and Time- Domain Dependency of Electrical Properties of Cement-Based Materials During Early Hydrationcitations
- 2016Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscopecitations
- 2016Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based modelscitations
- 2016Electrochemical immittance spectroscopy applied to a hybrid PVA/steel fiber engineered cementitious compositecitations
- 2015Two-point concrete resistivity measurementscitations
Places of action
Organizations | Location | People |
---|
article
Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based models
Abstract
In establishing the reliability of performance-related design methods for concrete – which are relevant for resistance against chloride-induced corrosion - long-term experience of local materials and practices and detailed knowledge of the ambient and local micro-climate are critical.Furthermore, in the development of analytical models for performance-based design, calibration against test data representative of actual conditions in practice is required.To this end, the current study presents results from full-scale, concrete pier-stems under long-term exposure to a marine environment with work focussing on XS2 (below mid-tide level) in which the concrete is regarded as fully saturated and XS3 (tidal, splash and spray) in which the concrete is in an unsaturated condition. These exposures represent zones where concrete structures are most susceptible to ionic ingress and deterioration.Chloride profiles and chloride transport behaviour are studied using both an empirical model (erfc function) and a physical model (ClinConc).The time dependency of surface chloride concentration (Cs) and apparent diffusivity (Da) were established for the empirical model whereas, in the ClinConc model (originally based on saturated concrete), two new environmental factors were introduced for the XS3 environmental exposure zone.Although the XS3 is considered as one environmental exposure zone according to BS EN 206-1:2013, the work has highlighted that even within this zone, significant changes in chloride ingress are evident.This study aims to update the parameters of both models for predicting the long term transport behaviour of concrete subjected to environmental exposure classes XS2 and XS3.