Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Horvath, Arpad

  • Google
  • 1
  • 4
  • 390

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder390citations

Places of action

Chart of shared publication
Gursel, A. Petek
1 / 1 shared
Mehta, P. Kumar
1 / 2 shared
Monteiro, Paulo J. M.
1 / 12 shared
Meral, Cagla
1 / 3 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Gursel, A. Petek
  • Mehta, P. Kumar
  • Monteiro, Paulo J. M.
  • Meral, Cagla
OrganizationsLocationPeople

article

Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder

  • Horvath, Arpad
  • Gursel, A. Petek
  • Mehta, P. Kumar
  • Monteiro, Paulo J. M.
  • Meral, Cagla
Abstract

<p>This paper reports the composition and properties of highly flowable self-consolidating concrete (SCC) mixtures made of high proportions of cement replacement materials such as fly ash and pulverized limestone instead of high dosage of a plasticizing agent or viscosity-modifying chemical admixtures. Self-consolidating concrete mixtures are being increasingly used for the construction of highly reinforced complex concrete elements and for massive concrete structures such as dams and thick foundation. In this study, by varying the proportion of portland cement (OPC), Class F-fly ash (F), and limestone powder (L), SCC mixtures with different strength values were produced, and the properties of both fresh and hardened concrete were determined. For a comprehensive analysis and quantification of emissions and global warming potential (GWP) from concrete production, life-cycle assessment (LCA) was employed. We find that high volume, up to 55% by weight replacement of OPC with F, or F and L produces highly workable concrete that has high 28-day and 365-day strength, and extremely high to very high resistance to chloride penetration along with low GWP for concrete production.</p>

Topics
  • strength
  • cement
  • viscosity
  • durability