People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arredondo-Arechavala, Miryam
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticlescitations
- 2023Intensifying levulinic acid hydrogenation using mechanochemically prepared copper on manganese oxide catalystscitations
- 2022Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sievescitations
- 2022Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sievescitations
- 2021ZnO nucleation into trititanate nanotubes by ALD equipment techniques, a new way to functionalize layered metal oxidescitations
- 2021Importance of overcoming MOVPE surface evolution instabilities for >1.3 μm metamorphic lasers on GaAscitations
- 2018Giant Resistive Switching in Mixed Phase BiFeO3 via phase population controlcitations
- 2017Non-equilibrium ferroelectric-ferroelastic 10nm nanodomains: wrinkles, period-doubling and power-law relaxationcitations
- 2017Non-equilibrium ferroelectric-ferroelastic 10nm nanodomains: wrinkles, period-doubling and power-law relaxationcitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2014Epitaxial ferroelectric Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 thin films on La 0.7 Sr 0.3 MnO 3 bottom electrodecitations
- 2014Studies of the Room-Temperature Multiferroic Pb(Fe0.5Ta0.5)0.4(Zr0.53Ti0.47)0.6O3: Resonant Ultrasound Spectroscopy, Dielectric, and Magnetic Phenomenacitations
- 2014Epitaxial ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films on La0.7Sr0.3MnO3 bottom electrodecitations
- 2013Strain dependent microstructural modifications of BiCrO3 epitaxial thin filmscitations
- 2011Microstructural analysis of interfaces in a ferromagnetic- multiferroic epitaxial heterostructurecitations
- 2011Chemistry of Ruddlesden-Popper planar faults at a ferroelectric-ferromagnet perovskite interfacecitations
- 2010Synthesis of epitaxial metal oxide nanocrystals via a phase separation approachcitations
- 2008Role of misfit dislocations in ferroelectric thin films CH031
Places of action
Organizations | Location | People |
---|
article
Intensifying levulinic acid hydrogenation using mechanochemically prepared copper on manganese oxide catalysts
Abstract
A series of copper nanoparticles supported on manganese oxide octahedral molecular sieves (OMS-2) were prepared using mechanochemical (Ball-Mill) and conventional wet-impregnation (Wet-Imp) methods. All catalysts prepared were thoroughly characterized using ICP-OES elemental analysis, X-ray diffraction (XRD), N<sub>2</sub> sorption, H<sub>2</sub> temperature programmed reduction (TPR) and transmission electron microscopy (TEM) techniques. The catalyst preparation methods greatly affected the size of the Cu nanoparticles. TEM images showed that 5 wt% Cu/OMS-2 (Ball-Mill) catalyst had a narrow particle size distribution with an average Cu nanoparticle size of 2.1 nm, while the corresponding 5 wt% Cu/OMS-2 catalyst prepared using wet-impregnation method had an average Cu nanoparticle size of 19.2 nm. The structural features of the catalysts were corelated with the catalytic activity using the liquid phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL), as an exemplar process. In LA hydrogenation at 190 °C and 20 bar H<sub>2</sub> pressure, the ball milled catalysts achieved higher LA conversion, and greater GVL yield, as compared to the corresponding catalysts prepared by wet-impregnation method, reinforcing that Cu nanoparticle size and metal dispersion are important tool to intensify the catalytic activity. For instance, 5 wt% Cu/OMS-2 (Ball-Mill) catalyst achieved almost twice the turnover frequency (TOF), 24.7 h<sup>−1</sup> as compared to the 5 wt% Cu/OMS-2 (Wet-Imp) catalyst, TOF 11.8 h<sup>−1</sup>, under identical reaction conditions. The results of this study demonstrate that ball milling is a superior method for Cu/OMS-2 catalyst preparation than wet impregnation.<br/><br/><br/>