Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bhowmik, Arghya

  • Google
  • 8
  • 28
  • 209

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulations6citations
  • 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes6citations
  • 2022Modeling the Solid Electrolyte Interphase:Machine Learning as a Game Changer?56citations
  • 2022Modeling the Solid Electrolyte Interphase56citations
  • 2021Alteration of Electronic Band Structure via a Metal-Semiconductor Interfacial Effect Enables High Faradaic Efficiency for Electrochemical Nitrogen Fixation50citations
  • 2017Design of oxide electrocatalysts for efficient conversion of CO2 into liquid fuelscitations
  • 2016Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material35citations
  • 2015Identifying Activity Descriptors for CO2 Electro-Reduction to Methanol on Rutile (110) Surfacescitations

Places of action

Chart of shared publication
Lysgaard, Steen
2 / 3 shared
Appiah, Williams Agyei
4 / 6 shared
Gollas, Bernhard
2 / 10 shared
Stark, Anna
2 / 2 shared
Garcia-Lastra, Juan Maria
1 / 2 shared
Chang, Jin Hyun
2 / 7 shared
Jankowski, Piotr
2 / 15 shared
Busk, Jonas
2 / 2 shared
García Lastra, Juan Maria
1 / 15 shared
Vegge, Tejs
3 / 36 shared
Heuer, Andreas
2 / 4 shared
Diddens, Diddo
2 / 3 shared
Mabrouk, Youssef
2 / 2 shared
Biswas, Ashmita
1 / 1 shared
Kamboj, Navpreet
1 / 1 shared
Pan, Jaysree
1 / 1 shared
Dey, Ramendra Sundar
1 / 1 shared
Nandi, Surajit
1 / 1 shared
Simonsen, Søren Bredmose
1 / 26 shared
Chen, Y. Z.
1 / 3 shared
Pryds, Nini
1 / 133 shared
Christensen, Dennis Valbjørn
1 / 15 shared
Le, Thanh Hung
1 / 11 shared
Van Nong, Ngo
1 / 50 shared
Han, Li
1 / 20 shared
Abdellahi, Ebtisam
1 / 3 shared
Linderoth, Søren
1 / 48 shared
Hansen, Heine Anton
1 / 11 shared
Chart of publication period
2023
2022
2021
2017
2016
2015

Co-Authors (by relevance)

  • Lysgaard, Steen
  • Appiah, Williams Agyei
  • Gollas, Bernhard
  • Stark, Anna
  • Garcia-Lastra, Juan Maria
  • Chang, Jin Hyun
  • Jankowski, Piotr
  • Busk, Jonas
  • García Lastra, Juan Maria
  • Vegge, Tejs
  • Heuer, Andreas
  • Diddens, Diddo
  • Mabrouk, Youssef
  • Biswas, Ashmita
  • Kamboj, Navpreet
  • Pan, Jaysree
  • Dey, Ramendra Sundar
  • Nandi, Surajit
  • Simonsen, Søren Bredmose
  • Chen, Y. Z.
  • Pryds, Nini
  • Christensen, Dennis Valbjørn
  • Le, Thanh Hung
  • Van Nong, Ngo
  • Han, Li
  • Abdellahi, Ebtisam
  • Linderoth, Søren
  • Hansen, Heine Anton
OrganizationsLocationPeople

article

Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes

  • Lysgaard, Steen
  • Appiah, Williams Agyei
  • Gollas, Bernhard
  • Stark, Anna
  • García Lastra, Juan Maria
  • Chang, Jin Hyun
  • Jankowski, Piotr
  • Bhowmik, Arghya
  • Busk, Jonas
Abstract

Aluminum batteries with imidazolium-based electrolytes present a promising avenue toward the post-lithium-ion battery era. A critical bottleneck is the development of reversible aluminum metal anodes, which is hindered by sluggish battery charge–discharge characteristics due to the reversible/irreversible side reactions on the anodic and cathodic sides. The indispensable discernment of the stripping-plating mechanisms at the electrode–electrolyte interface is not well explored due to the complexity of the various reactions occurring at the surface of the aluminum anode. Herein, a high-fidelity physics-based model is coupled with density functional theory to explain the stripping-plating mechanisms that occur on the surface of the aluminum anode at different current densities. Sensitivity analysis is performed on the experimentally validated physics-based model using a machine-learning Gaussian process regression model to identify the most significant parameters for the plating-stripping mechanism of aluminum. The electrodeposition of aluminum is controlled by both diffusion and kinetics and is limited by the kinetics of the electrochemical reactions at a high current density. This work highlights the assurance of combining models at different scales, machine learning algorithms, and experiments to analyze the behavior of complex electrochemical systems.

Topics
  • density
  • impedance spectroscopy
  • surface
  • theory
  • experiment
  • aluminium
  • density functional theory
  • Lithium
  • current density
  • electrodeposition
  • machine learning